Символ Похгаммера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показана 21 промежуточная версия 3 участников)
Строка 3: Строка 3:
 
В математике '''убывающим факториалом''' (англ. ''falling factorial'') (иногда называется '''нисходящим факториалом''', '''постепенно убывающим факториалом''' или '''нижним факториалом''') обозначают:
 
В математике '''убывающим факториалом''' (англ. ''falling factorial'') (иногда называется '''нисходящим факториалом''', '''постепенно убывающим факториалом''' или '''нижним факториалом''') обозначают:
 
:<tex>(x)_{n}=x^{\underline{n}}=x(x-1)(x-2)\cdots(x-n+1)=\prod\limits_{k=1}^{n}(x-(k-1))=\prod\limits_{k=0}^{n-1}(x-k)</tex>
 
:<tex>(x)_{n}=x^{\underline{n}}=x(x-1)(x-2)\cdots(x-n+1)=\prod\limits_{k=1}^{n}(x-(k-1))=\prod\limits_{k=0}^{n-1}(x-k)</tex>
 +
При <tex>n=0</tex> значение принимается равным <tex>1</tex> (пустое произведение).
 
}}
 
}}
 
{{Определение
 
{{Определение
Строка 8: Строка 9:
 
'''Растущий факториал''' (англ. ''rising factorial'') (иногда называется '''функцией Похгаммера''', '''многочленом Похгаммера''', '''восходящим факториалом''', '''постепенно растущим произведением''' или '''верхним факториалом''') определяется следующей формулой:
 
'''Растущий факториал''' (англ. ''rising factorial'') (иногда называется '''функцией Похгаммера''', '''многочленом Похгаммера''', '''восходящим факториалом''', '''постепенно растущим произведением''' или '''верхним факториалом''') определяется следующей формулой:
 
:<tex>x^{(n)}=x^{\overline{n}}=x(x+1)(x+2)\cdots(x+n-1)=\prod\limits_{k=1}^{n}(x+(k-1))=\prod\limits_{k=0}^{n-1}(x+k). </tex>
 
:<tex>x^{(n)}=x^{\overline{n}}=x(x+1)(x+2)\cdots(x+n-1)=\prod\limits_{k=1}^{n}(x+(k-1))=\prod\limits_{k=0}^{n-1}(x+k). </tex>
 +
При <tex>n=0</tex> значение принимается равным <tex>1</tex> (пустое произведение).
 
}}
 
}}
  
 
Грахам, Кнут и Паташник<ref>Ronald L. Graham, Donald E. Knuth and Oren Patashnik in their book ''Concrete Mathematics'' (<tex>1988</tex>), Addison-Wesley, Reading MA. ISBN <tex>0-201-14236-8</tex>, pp.&nbsp;<tex>47</tex>,<tex>48</tex></ref> предложили произносить эти записи как "<tex>x</tex> растущий к <tex>m</tex>" и "<tex>x</tex> убывающий к <tex>m</tex>" соответственно.
 
Грахам, Кнут и Паташник<ref>Ronald L. Graham, Donald E. Knuth and Oren Patashnik in their book ''Concrete Mathematics'' (<tex>1988</tex>), Addison-Wesley, Reading MA. ISBN <tex>0-201-14236-8</tex>, pp.&nbsp;<tex>47</tex>,<tex>48</tex></ref> предложили произносить эти записи как "<tex>x</tex> растущий к <tex>m</tex>" и "<tex>x</tex> убывающий к <tex>m</tex>" соответственно.
  
При <tex>n=0</tex> значение принимается равным <tex>1</tex> (пустое произведение).
+
В зависимости от контекста символ Похгаммера может обозначать как растущий факториал, так и убывающий факториал.
  
В зависимости от контекста символ Похгаммера может обозначать как растущий факториал, так и убывающий факториал. Сам Лео Август Похгаммер для себя использовал <tex>(x)^n</tex> в другом смысле - для обозначения биномиального коэффициента <tex>\tbinom xn</tex>.
+
Когда <tex>x</tex> неотрицательное целое число, <tex>(x)_n</tex> равняется числу инъективных отображений<ref name="Injective function">[https://en.wikipedia.org/wiki/Injective_function Injective function]</ref> из множества с <tex>n</tex> элементами во множество из <tex>x</tex> элементов. Для обозначения этого числа часто применяют обозначения <tex>_x P_n</tex> и <tex>P(x,n)</tex>. Символ Похгаммера в основном используется в алгебре, где <tex>x</tex> {{---}} переменная, то есть <tex>(x)_n</tex> есть ни что иное как многочлен степени <tex>n</tex> от <tex>x</tex>.
  
Когда <tex>x</tex> неотрицательное целое число, <tex>(x)_n</tex> равняется числу инъективных отображений<ref name="Injective function">[https://en.wikipedia.org/wiki/Injective_function Injective function]</ref> из множества с <tex>n</tex> элементами во множество из <tex>x</tex> элементов. Для обозначения этого числа часто применяют обозначения <tex>_x P_n</tex> и <tex>P(x,n)</tex>. Символ Похгаммера в основном используется в алгебре, где <tex>x</tex> {{---}} переменная, то есть <tex>(x)_n</tex> есть ни что иное как многочлен степени <tex>n</tex> от <tex>x</tex>.
+
<b>Замечание</b>
  
 
Другие формы записи убывающего факториала: <tex>P(x,n)</tex>, <tex>^x P_n</tex>, ,<tex>P_{x,n}</tex> или <tex>_x P_n</tex>.
 
Другие формы записи убывающего факториала: <tex>P(x,n)</tex>, <tex>^x P_n</tex>, ,<tex>P_{x,n}</tex> или <tex>_x P_n</tex>.
  
 
Другое обозначение растущего факториала <tex>x^{(n)}</tex> реже встречается, чем <tex>(x)^+_n</tex>. Обозначение <tex>(x)^+_n</tex> используется для растущего факториала, запись <tex>(x)^-_n</tex> обычно применяется для обозначения убывающего факториала для избежания недоразумений.<ref name=Knuth>According to Knuth, The Art of Computer Programming, Vol. <tex>1</tex>, <tex>3</tex>rd ed., p. <tex>50</tex>.</ref>
 
Другое обозначение растущего факториала <tex>x^{(n)}</tex> реже встречается, чем <tex>(x)^+_n</tex>. Обозначение <tex>(x)^+_n</tex> используется для растущего факториала, запись <tex>(x)^-_n</tex> обычно применяется для обозначения убывающего факториала для избежания недоразумений.<ref name=Knuth>According to Knuth, The Art of Computer Programming, Vol. <tex>1</tex>, <tex>3</tex>rd ed., p. <tex>50</tex>.</ref>
[[File:RisingFactorial_2.png|401px|thumb|upright|График растущего факториала для <tex>n</tex> от <tex>0</tex> до <tex>4</tex>]]
+
[[File:RisingFactorial_3.jpg|401px|thumb|upright|График растущего факториала для <tex>n</tex> от <tex>0</tex> до <tex>4</tex>]]
 
==Примеры==
 
==Примеры==
[[File:PlotThePochhammerSymbolExample.png|401px|thumb|upright|График убывающего факториала для <tex>n</tex> от <tex>0</tex> до <tex>4</tex>]]
+
[[File:PlotThePochhammerSymbolExample_02.png|401px|thumb|upright|График убывающего факториала для <tex>n</tex> от <tex>0</tex> до <tex>4</tex>]]
 
Несколько первых растущих факториалов:
 
Несколько первых растущих факториалов:
 
:<tex>x^{(0)}=x^{\overline0}=1 </tex>
 
:<tex>x^{(0)}=x^{\overline0}=1 </tex>
Строка 41: Строка 43:
 
Убывающий и растущий факториалы определены так же и в любом ассоциативном кольце с единицей и, следовательно, <tex dpi=150>x</tex> может быть даже комплексным числом, многочленом с комплексными коэффициентами или любой функцией определенной на комплексных числах.
 
Убывающий и растущий факториалы определены так же и в любом ассоциативном кольце с единицей и, следовательно, <tex dpi=150>x</tex> может быть даже комплексным числом, многочленом с комплексными коэффициентами или любой функцией определенной на комплексных числах.
  
===Связывающие коэффициенты===
+
===Коэффициенты связи===
 
Так как убывающие факториалы {{---}} базис кольца многочленов, мы можем переписать произведение двух из них как линейную комбинацию убывающих факториалов:
 
Так как убывающие факториалы {{---}} базис кольца многочленов, мы можем переписать произведение двух из них как линейную комбинацию убывающих факториалов:
  
Строка 47: Строка 49:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Коэффициенты <tex dpi=150>(x)_{m+n-k}</tex> называются ''' связывающими коэффициентами''' (англ. ''connection coefficients'').
+
Коэффициенты <tex dpi=150>{m \choose k} {n \choose k} k!</tex>, стоящие при <tex dpi=150>(x)_{m+n-k}</tex>, называются '''коэффициентами связи''' (англ. ''connection coefficients'').
 
}}
 
}}
 +
 
===Биномиальный коэффициент===
 
===Биномиальный коэффициент===
 
Растущий и убывающий факториалы могут быть использованы для обозначения биномиального коэффициента:
 
Растущий и убывающий факториалы могут быть использованы для обозначения биномиального коэффициента:
  
:<tex dpi=150>\frac{x^{(n)}}{n!} = {x+n-1 \choose n} \quad\mbox{and}\quad \frac{(x)_n}{n!} = {x \choose n}.</tex>
+
:<tex dpi=150>\frac{x^{(n)}}{n!} = {x+n-1 \choose n} </tex> и <tex dpi=150>\frac{(x)_n}{n!} = {x \choose n}.</tex>
  
 
Таким образом, многие свойства биномиальных коэффициентов справедливы для убывающих и растущих факториалов.
 
Таким образом, многие свойства биномиальных коэффициентов справедливы для убывающих и растущих факториалов.
Строка 59: Строка 62:
 
Растущий факториал может быть выражен как убывающий факториал, начинающийся с другого конца,
 
Растущий факториал может быть выражен как убывающий факториал, начинающийся с другого конца,
  
:<tex dpi=150>x^{(n)} = {(x + n - 1)}_n ,</tex>
+
:<tex dpi=150>x^{(n)} = {(x + n - 1)}_n </tex>
  
 
или как убывающий с противоположным аргументом,
 
или как убывающий с противоположным аргументом,
  
:<tex dpi=150>x^{(n)} = {(-1)}^n {(-x)}_{{n}} .</tex>
+
:<tex dpi=150>x^{(n)} = {(-1)}^n {(-x)}_{{n}} </tex>
  
Отношение двух символов Похгаммера определяется как:
+
Отношение двух символов Похгаммера можно выразить следующим образом:
  
 
:<tex dpi=150>\frac{(x)_n}{(x)_i} = (x-i)_{n-i},\ n \geqslant i. </tex>
 
:<tex dpi=150>\frac{(x)_n}{(x)_i} = (x-i)_{n-i},\ n \geqslant i. </tex>
  
Кроме того, мы можем выразить убывающие факториалы следующим образом:  
+
Убывающий факториал возможно выразить следующим способом:  
 
   
 
   
:<tex dpi=150>x^{\underline{m+n}} = x^{\underline{m}} (x-m)^{\underline{n}}</tex>
+
:<tex dpi=150>(x)_{m+n} = x_{m} (x-m)_{n}</tex>
:<tex dpi=150>(x)_{m+n} = (x)_m (x+m)_n</tex>
+
:<tex dpi=150>(x)_{-n} = \frac{1}{(x+1)(x+2) \cdots (x+n)} = \frac{1}{(x+1)^n} = \frac{1}{(x+n)_n} = \frac{1}{n! \binom{x+n}{n}}</tex>
:<tex dpi=150>(x)_{-n} = \frac{1}{(x-n)_n} = \frac{1}{(x-1)^{\underline{n}}}</tex>
+
 
:<tex dpi=150>x^{\underline{-n}} = \frac{1}{(x+1)_n} = \frac{1}{n! \binom{x+n}{n}} = \frac{1}{(x+1)(x+2) \cdots (x+n)}</tex>
+
====Числа Стирлинга первого рода====
 +
Растущий факториал выражается с помощью [[Числа Стирлинга первого рода|чисел Стирлинга первого рода]]:
 +
 
 +
:<tex dpi=150>x^{(n)} = \sum\limits_{k=1}^n s(n,k) x^k</tex>
  
 
====Числа Стирлинга второго рода====
 
====Числа Стирлинга второго рода====
 
Убывающий и растущий факториалы выражаются друг через друга при помощи [[Числа Стирлинга второго рода|чисел Стирлинга второго рода]]:
 
Убывающий и растущий факториалы выражаются друг через друга при помощи [[Числа Стирлинга второго рода|чисел Стирлинга второго рода]]:
  
<tex dpi=150> x^n = \sum\limits_{k=0}^{n} \left\{\begin{matrix} n \\ n-k \end{matrix} \right\} x^{\underline{n-k}} </tex>
+
<tex dpi=150> x^{(n)} = \sum\limits_{k=0}^{n} \left\{\begin{matrix} n \\ n-k \end{matrix} \right\} (x)_{n-k} </tex>
:<tex dpi=150> = \sum\limits_{k=0}^{n} \left\{\begin{matrix} n \\ k \end{matrix} \right\}(-1)^{n-k} (x)_k. </tex>
+
:<tex dpi=150> = \sum\limits_{k=0}^{n} \left\{\begin{matrix} n \\ k \end{matrix} \right\}(-1)^{n-k} (x)_k </tex>
  
 
====Числа Лаха====
 
====Числа Лаха====
Строка 90: Строка 96:
 
|statement=<tex dpi=150> x^{(n)} = \sum\limits_{k=1}^n (L(n,k) \times (x)_k) = \sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) </tex>
 
|statement=<tex dpi=150> x^{(n)} = \sum\limits_{k=1}^n (L(n,k) \times (x)_k) = \sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) </tex>
 
|proof=
 
|proof=
Заметим, что <tex dpi=150>(x)_k=0</tex> при <tex dpi=150>x<k</tex>, поэтому слагаемые из суммы в правой части, начиная с <tex dpi=150>k=m</tex>, равны нулю, то есть:
+
Второе равенство получается из определения чисел Лаха. Поэтому осталось доказать лишь то, что левая часть равняется правой:
:<tex dpi=150>\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k)=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k)</tex>
+
:<tex dpi=150> x^{(n)} =\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) </tex>
Подставим целое <tex dpi=150>m</tex> из отрезка <tex dpi=150>[0;n]</tex>, тогда получим (заметим, что <tex dpi=150>(x)_k=0</tex> при <tex dpi=150>x<k</tex>):
+
Подставим целое <tex dpi=150>m</tex> из отрезка <tex dpi=150>[0;n]</tex>, тогда получим:
:<tex dpi=150>\frac{(n+m-1)!}{(m-1)!}=\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!(n-k)!}\times\frac{n!}{k!}\times\frac{m!}{(m-k)!})</tex>
+
:<tex dpi=150> m^{(n)} =\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (m)_k) </tex>
 +
Заметим, что <tex dpi=150>(m)_k=0</tex> при <tex dpi=150>m+1 \leqslant k</tex>, поэтому слагаемые из суммы в правой части, начиная с <tex dpi=150>k\geqslant m+1</tex>, равны нулю, то есть:
 +
:<tex dpi=150>\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (m)_k)=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{k-1} \frac{n!}{k!} \times (m)_k)</tex>
 
Поделим обе части на <tex dpi=150>n!</tex> и получим, что левая часть равна:
 
Поделим обе части на <tex dpi=150>n!</tex> и получим, что левая часть равна:
 
:<tex dpi=150>\frac{(n+m-1)!}{(m-1)!n!}=\frac{(n+m-1)!}{((n+m-1)-n)!n!}=\binom{n+m-1}{n}</tex>
 
:<tex dpi=150>\frac{(n+m-1)!}{(m-1)!n!}=\frac{(n+m-1)!}{((n+m-1)-n)!n!}=\binom{n+m-1}{n}</tex>
Строка 99: Строка 107:
  
 
<tex dpi=150>\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!(n-k)!}\times\frac{1}{k!}\times\frac{m!}{(m-k)!})=\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!(n-k)!}\times\frac{m!}{k!(m-k)!})</tex>
 
<tex dpi=150>\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!(n-k)!}\times\frac{1}{k!}\times\frac{m!}{(m-k)!})=\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!(n-k)!}\times\frac{m!}{k!(m-k)!})</tex>
:<tex dpi=150>=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{k-1}\times\binom{m}{k})</tex>
+
:<tex dpi=150>=\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}\times\frac{m!}{k!(m-k)!})=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{k-1}\times\binom{m}{k})</tex>
 
То есть мы хотим теперь доказать тождество:
 
То есть мы хотим теперь доказать тождество:
 
:<tex dpi=150>\binom{n+m-1}{n}=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{n-k}\times\binom{m}{k})</tex>
 
:<tex dpi=150>\binom{n+m-1}{n}=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{n-k}\times\binom{m}{k})</tex>
  
Это тождество очевидно из комбинаторики, так как обе части равны числу способов выбрать из <tex dpi=150>n+m-1</tex> элементов, разделённых на два множества по <tex dpi=150>n-1</tex> и <tex dpi=150>m</tex> элементов, <tex dpi=150>n</tex> элементов. С одной стороны нельзя не признать, что это левая часть тождества по определению сочетания. С другой стороны нельзя не согласиться, что это правая часть тождества, в котором <tex dpi=150>k</tex> означает количество элементов, берущихся из множества размера <tex dpi=150>m</tex>.
+
Это тождество очевидно из комбинаторики, так как обе части равны числу способов выбрать из <tex dpi=150>n+m-1</tex> элементов, разделённых на два множества по <tex dpi=150>n-1</tex> и <tex dpi=150>m</tex> элементов, <tex dpi=150>n</tex> элементов. С одной стороны нельзя не признать, что это левая часть тождества по определению сочетания. С другой стороны нельзя не согласиться, что это правая часть тождества, в котором <tex dpi=150>k</tex> означает количество элементов, берущихся из множества размера <tex dpi=150>m</tex>, а <tex dpi=150>n-k</tex> из второго множества размера <tex dpi=150>n-1</tex>.
 
Многочлены, стоящие в левой и правой частях тождества, оказались равны в <tex dpi=150>n+1</tex> точке и при этом имеют степень не больше <tex dpi=150>n</tex>, то есть они формально совпадают.
 
Многочлены, стоящие в левой и правой частях тождества, оказались равны в <tex dpi=150>n+1</tex> точке и при этом имеют степень не больше <tex dpi=150>n</tex>, то есть они формально совпадают.
 
}}
 
}}
Строка 116: Строка 124:
 
|statement=<tex dpi=150>x^{(n)}=\frac{\Gamma(x+n)}{\Gamma(x)}</tex>
 
|statement=<tex dpi=150>x^{(n)}=\frac{\Gamma(x+n)}{\Gamma(x)}</tex>
 
|proof=
 
|proof=
<tex dpi=150>\Gamma(x) = x(x-1)(x-2)\cdots\{x\}</tex> {{---}} для вещественного <tex dpi=150>x</tex>. Значит,
+
:<tex dpi=150>\Gamma(z+1) = z\Gamma(z)</tex> {{---}} для комплексного <tex dpi=150>z</tex>.
 +
Значит, это тождество верно и для <tex dpi=150>z=x</tex>, где <tex dpi=150>x</tex> {{---}} вещественное число. То есть:
 +
:<tex dpi=150>\Gamma(x) = (x-1)\Gamma(x-1)</tex> {{---}} для вещественного <tex dpi=150>x</tex>.
 +
Заметим тогда, что:
  
<tex dpi=150>\Gamma(x+n) = (x+n-1)(x+n-2)(x+n-3)\cdots\{x+n\}</tex>
+
<tex dpi=150>\Gamma(x+n) = ((x+n)-1)\cdot\Gamma((x+n)-1) = ((x+n)-1)(x+n-2)\cdot\Gamma((x+n)-2)</tex>  
:<tex dpi=150>=(x+n-1)(x+n-2)(x+n-3)\cdots\{x\}</tex>
+
:<tex dpi=150>= \cdots = ((x+n)-1)((x+n)-2)\cdots((x+n)-n)\cdot\Gamma((x+n)-n)</tex>
 +
:<tex dpi=150>= ((x+n)-1)((x+n)-2)\cdots x\cdot\Gamma(x)</tex>
  
<tex dpi=150>\Gamma(x) = (x-1)(x-2)(x-3)\cdots\{x-1\}</tex>
+
Значит:
:<tex dpi=150>=(x-1)(x-2)(x-3)\cdots\{x\}</tex>
 
  
Объединив эти два факта, получим:
+
<tex dpi=150>\frac{\Gamma(x+n)}{\Gamma(x)} = \frac{((x+n)-1)((x+n)-2)\cdots x\cdot\Gamma(x)}{\Gamma(x)}</tex>
 
+
:<tex dpi=150>= (x+n-1)(x+n-2)\cdots x = x(x+1)\cdots(x+n-1)=x^{(n)}</tex>
<tex dpi=150>\frac{\Gamma(x+1)}{\Gamma(x-n+1)}=\frac{(x+n-1)(x+n-2)(x+n-3)\cdots\{x\}}{(x-1)(x-2)(x-3)\cdots\{x\}}</tex>
 
:<tex dpi=150>=(x+n-1)(x+n-2)(x+n-3)\cdots(x)=x^{(n)}</tex>.
 
 
}}
 
}}
  
Строка 138: Строка 147:
 
|statement=<tex dpi=150>(x)_n=\frac{\Gamma(x+1)}{\Gamma(x-n+1)}</tex>
 
|statement=<tex dpi=150>(x)_n=\frac{\Gamma(x+1)}{\Gamma(x-n+1)}</tex>
 
|proof=
 
|proof=
<tex dpi=150>\Gamma(x) = x(x-1)(x-2)\cdots\{x\}</tex> {{---}} по определению. Значит,
+
:<tex dpi=150>\Gamma(z+1) = z\Gamma(z)</tex> {{---}} для комплексного <tex dpi=150>z</tex>.
 +
Значит, это тождество верно и для <tex dpi=150>z=x</tex>, где <tex dpi=150>x</tex> {{---}} вещественное число. То есть:
 +
:<tex dpi=150>\Gamma(x+1) = x\Gamma(x)</tex> {{---}} для вещественного <tex dpi=150>x</tex>.
 +
Заметим тогда, что:
  
<tex dpi=150>\Gamma(x+1) = x(x-1)(x-2)\cdots\{x\}</tex>
+
<tex dpi=150>\Gamma(x+1) = x\cdot\Gamma(x) = x(x-1)\cdot\Gamma(x-1)</tex>
 +
:<tex dpi=150>= \cdots = x(x-1)\cdots(x-n+1)\cdot\Gamma(x-n+1)</tex>
  
<tex dpi=150>\Gamma(x-n+1) = (x-n+1)(x-n-2)(x-n-3)\cdots\{x-n+1\}</tex>
+
Значит:
:<tex dpi=150>=(x-n+1)(x-n-2)(x-n-3)\cdots\{x\}</tex>
 
  
Объединив эти два факта, получим:
+
<tex dpi=150>\frac{\Gamma(x+1)}{\Gamma(x-n+1)} = \frac{x(x-1)\cdots(x-n+1)\cdot\Gamma(x-n+1)}{\Gamma(x-n+1)}</tex>
 
+
:<tex dpi=150>= x(x-1)\cdots(x-n+1) = (x)_n</tex>
<tex dpi=150>\frac{\Gamma(x+1)}{\Gamma(x-n+1)}=\frac{x(x-1)(x-2)\cdots\{x\}}{(x-n+1)(x-n-2)(x-n-3)\cdots\{x\}}</tex>
 
:<tex dpi=150>=x(x-1)(x-2)\cdots(x-n+1)=(x)_n</tex>.
 
 
}}
 
}}
  
 
===Дифференциал===
 
===Дифференциал===
Если <tex dpi=150>D</tex> означает производную по <tex dpi=150>x</tex>, то
+
{{Утверждение
 
+
|id=  
:<tex dpi=150>D^n(x^a) = (a)_n\,\, x^{a-n}.</tex>
+
|author=
 
+
|about=
===Теорема об умножении===
+
|statement=<tex dpi=150>\frac{\partial^n(x^a)}{\partial x^n} = (a)_n\,\, x^{a-n}</tex>
По теореме об умножении<ref>[https://en.wikipedia.org/wiki/Multiplication_theorem Multiplication theorem]</ref> получаем следующие выражения для растущего факториала:
+
|proof=
 
+
<tex dpi=150>\frac{\partial^n(x^a)}{\partial x^n} =a\times\frac{\partial^{n-1}(x^{a-1})}{\partial x^{n-1}}=a(a-1)\times\frac{\partial^{n-2}(x^{a-2})}{\partial x^{n-2}}</tex>
:<tex dpi=150>(x)_{k+mn} = (x)_k m^{mn} \prod\limits_{j=0}^{m-1} \left(\frac{x+j+k}{m}\right)_n,\ m \in \mathbb{N} </tex>
+
:<tex dpi=150>=a(a-1)\cdots (a-n+2)\times\frac{\partial(x^{a-(n-1)})}{\partial x}=(a)_n\,\, x^{a-n}</tex>
:<tex dpi=150>(ax+b)_n = x^n \prod\limits_{k=0}^{x-1} \left(a+\frac{b+k}{x}\right)_{n/x},\ x \in \mathbb{Z}^{+} </tex>  
+
}}
:<tex dpi=150>(2x)_{2n} = 2^{2n} (x)_n \left(x+\frac{1}{2}\right)_n. </tex>
 
  
 
==Обобщения==
 
==Обобщения==
Обобщенный символ Похгаммера называется обобщённый символ Похгаммера<ref>[https://en.wikipedia.org/wiki/Generalized_Pochhammer_symbol Generalized Pochhammer symbol]</ref>, используемый в многомерном математическом анализе. Также существует ''q''-аналог<ref>[https://en.wikipedia.org/wiki/Q-analog ''q''-analog]</ref> {{---}} ''q''-Похгаммер символ<ref>[https://en.wikipedia.org/wiki/Q-Pochhammer_symbol ''q''-Pochhammer symbol]</ref>.
+
Существует обобщённый символ Похгаммера<ref>[https://en.wikipedia.org/wiki/Generalized_Pochhammer_symbol Generalized Pochhammer symbol]</ref>, используемый в многомерном математическом анализе. Также существует <tex>q</tex>-аналог<ref>[https://en.wikipedia.org/wiki/Q-analog ''q''-analog]</ref> {{---}} <tex>q</tex>-Похгаммер символ<ref>[https://en.wikipedia.org/wiki/Q-Pochhammer_symbol ''q''-Pochhammer symbol]</ref>.
  
Обобщение убывающего факториала, в которой функция вычисляется по нисходящей арифметической последовательности целых чисел, а значения перемножаются как:
+
Обобщение убывающего факториала {{---}} функция, определённая следующим образом:
  
 
:<tex dpi=150>[f(x)]^{k/-h}=f(x)\cdot f(x-h)\cdot f(x-2h)\cdots f(x-(k-1)h),</tex>
 
:<tex dpi=150>[f(x)]^{k/-h}=f(x)\cdot f(x-h)\cdot f(x-2h)\cdots f(x-(k-1)h),</tex>
  
где <tex>-h</tex> декремент и <tex>k</tex> число факторов. Соответствующее обобщения растущего факториала:
+
где <tex>-h</tex> и <tex>k</tex> {{---}} разница в убывающей арифметической прогрессии аргументов множителей и число множителей соответственно. Аналогичное обобщение растущего факториала:
  
 
:<tex dpi=150>[f(x)]^{k/h}=f(x)\cdot f(x+h)\cdot f(x+2h)\cdots f(x+(k-1)h).</tex>
 
:<tex dpi=150>[f(x)]^{k/h}=f(x)\cdot f(x+h)\cdot f(x+2h)\cdots f(x+(k-1)h).</tex>
Строка 176: Строка 185:
 
Эта запись объединяет растущий и убывающий факториалы, которые <tex dpi=150>[x^{k/1}]</tex> и <tex dpi=150>[x^{k/-1}]</tex> соответственно.
 
Эта запись объединяет растущий и убывающий факториалы, которые <tex dpi=150>[x^{k/1}]</tex> и <tex dpi=150>[x^{k/-1}]</tex> соответственно.
  
Для арифметической функции <tex>f: \mathbb{N} \rightarrow \mathbb{C}</tex> и параметров <tex>x, t</tex> определен обобщенное факториальное произведение вида:
+
Для арифметической функции <tex>f: \mathbb{N} \rightarrow \mathbb{C}</tex> и параметров <tex>x, t</tex> определено обобщенное факториальное произведение вида:
  
 
:<tex dpi=150>(x)_{n,f,t} = \prod\limits_{k=1}^{n-1} \left(x+\frac{f(k)}{t^k}\right)</tex>
 
:<tex dpi=150>(x)_{n,f,t} = \prod\limits_{k=1}^{n-1} \left(x+\frac{f(k)}{t^k}\right)</tex>

Текущая версия на 19:32, 4 сентября 2022

Определение:
В математике убывающим факториалом (англ. falling factorial) (иногда называется нисходящим факториалом, постепенно убывающим факториалом или нижним факториалом) обозначают:
[math](x)_{n}=x^{\underline{n}}=x(x-1)(x-2)\cdots(x-n+1)=\prod\limits_{k=1}^{n}(x-(k-1))=\prod\limits_{k=0}^{n-1}(x-k)[/math]
При [math]n=0[/math] значение принимается равным [math]1[/math] (пустое произведение).


Определение:
Растущий факториал (англ. rising factorial) (иногда называется функцией Похгаммера, многочленом Похгаммера, восходящим факториалом, постепенно растущим произведением или верхним факториалом) определяется следующей формулой:
[math]x^{(n)}=x^{\overline{n}}=x(x+1)(x+2)\cdots(x+n-1)=\prod\limits_{k=1}^{n}(x+(k-1))=\prod\limits_{k=0}^{n-1}(x+k). [/math]
При [math]n=0[/math] значение принимается равным [math]1[/math] (пустое произведение).


Грахам, Кнут и Паташник[1] предложили произносить эти записи как "[math]x[/math] растущий к [math]m[/math]" и "[math]x[/math] убывающий к [math]m[/math]" соответственно.

В зависимости от контекста символ Похгаммера может обозначать как растущий факториал, так и убывающий факториал.

Когда [math]x[/math] неотрицательное целое число, [math](x)_n[/math] равняется числу инъективных отображений[2] из множества с [math]n[/math] элементами во множество из [math]x[/math] элементов. Для обозначения этого числа часто применяют обозначения [math]_x P_n[/math] и [math]P(x,n)[/math]. Символ Похгаммера в основном используется в алгебре, где [math]x[/math] — переменная, то есть [math](x)_n[/math] есть ни что иное как многочлен степени [math]n[/math] от [math]x[/math].

Замечание

Другие формы записи убывающего факториала: [math]P(x,n)[/math], [math]^x P_n[/math], ,[math]P_{x,n}[/math] или [math]_x P_n[/math].

Другое обозначение растущего факториала [math]x^{(n)}[/math] реже встречается, чем [math](x)^+_n[/math]. Обозначение [math](x)^+_n[/math] используется для растущего факториала, запись [math](x)^-_n[/math] обычно применяется для обозначения убывающего факториала для избежания недоразумений.[3]

График растущего факториала для [math]n[/math] от [math]0[/math] до [math]4[/math]

Примеры

График убывающего факториала для [math]n[/math] от [math]0[/math] до [math]4[/math]

Несколько первых растущих факториалов:

[math]x^{(0)}=x^{\overline0}=1 [/math]
[math]x^{(1)}=x^{\overline1}=x [/math]
[math]x^{(2)}=x^{\overline2}=x(x+1)=x^2+x [/math]
[math]x^{(3)}=x^{\overline3}=x(x+1)(x+2)=x^3+3x^2+2x [/math]
[math]x^{(4)}=x^{\overline4}=x(x+1)(x+2)(x+3)=x^4+6x^3+11x^2+6x [/math]

Несколько первых убывающих факториалов:

[math](x)_{0}=x^{\underline0}=1 [/math]
[math](x)_{1}=x^{\underline1}=x [/math]
[math](x)_{2}=x^{\underline2}=x(x-1)=x^2-x [/math]
[math](x)_{3}=x^{\underline3}=x(x-1)(x-2)=x^3-3x^2+2x [/math]
[math](x)_{4}=x^{\underline4}=x(x-1)(x-2)(x-3)=x^4-6x^3+11x^2-6x [/math]

Коэффициенты в выражениях являются числами Стирлинга первого рода.

Свойства

Убывающий и растущий факториалы определены так же и в любом ассоциативном кольце с единицей и, следовательно, [math]x[/math] может быть даже комплексным числом, многочленом с комплексными коэффициентами или любой функцией определенной на комплексных числах.

Коэффициенты связи

Так как убывающие факториалы — базис кольца многочленов, мы можем переписать произведение двух из них как линейную комбинацию убывающих факториалов:

[math](x)_m (x)_n = \sum\limits_{k=0}^m {m \choose k} {n \choose k} k!\, (x)_{m+n-k}.[/math]
Определение:
Коэффициенты [math]{m \choose k} {n \choose k} k![/math], стоящие при [math](x)_{m+n-k}[/math], называются коэффициентами связи (англ. connection coefficients).


Биномиальный коэффициент

Растущий и убывающий факториалы могут быть использованы для обозначения биномиального коэффициента:

[math]\frac{x^{(n)}}{n!} = {x+n-1 \choose n} [/math] и [math]\frac{(x)_n}{n!} = {x \choose n}.[/math]

Таким образом, многие свойства биномиальных коэффициентов справедливы для убывающих и растущих факториалов.

Связь убывающего и растущего факториалов

Растущий факториал может быть выражен как убывающий факториал, начинающийся с другого конца,

[math]x^{(n)} = {(x + n - 1)}_n [/math]

или как убывающий с противоположным аргументом,

[math]x^{(n)} = {(-1)}^n {(-x)}_{{n}} [/math]

Отношение двух символов Похгаммера можно выразить следующим образом:

[math]\frac{(x)_n}{(x)_i} = (x-i)_{n-i},\ n \geqslant i. [/math]

Убывающий факториал возможно выразить следующим способом:

[math](x)_{m+n} = x_{m} (x-m)_{n}[/math]
[math](x)_{-n} = \frac{1}{(x+1)(x+2) \cdots (x+n)} = \frac{1}{(x+1)^n} = \frac{1}{(x+n)_n} = \frac{1}{n! \binom{x+n}{n}}[/math]

Числа Стирлинга первого рода

Растущий факториал выражается с помощью чисел Стирлинга первого рода:

[math]x^{(n)} = \sum\limits_{k=1}^n s(n,k) x^k[/math]

Числа Стирлинга второго рода

Убывающий и растущий факториалы выражаются друг через друга при помощи чисел Стирлинга второго рода:

[math] x^{(n)} = \sum\limits_{k=0}^{n} \left\{\begin{matrix} n \\ n-k \end{matrix} \right\} (x)_{n-k} [/math]

[math] = \sum\limits_{k=0}^{n} \left\{\begin{matrix} n \\ k \end{matrix} \right\}(-1)^{n-k} (x)_k [/math]

Числа Лаха

Убывающий и растущий факториалы связаны друг с другом числами Лаха[4]:

Утверждение:
[math] x^{(n)} = \sum\limits_{k=1}^n (L(n,k) \times (x)_k) = \sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) [/math]
[math]\triangleright[/math]

Второе равенство получается из определения чисел Лаха. Поэтому осталось доказать лишь то, что левая часть равняется правой:

[math] x^{(n)} =\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (x)_k) [/math]

Подставим целое [math]m[/math] из отрезка [math][0;n][/math], тогда получим:

[math] m^{(n)} =\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (m)_k) [/math]

Заметим, что [math](m)_k=0[/math] при [math]m+1 \leqslant k[/math], поэтому слагаемые из суммы в правой части, начиная с [math]k\geqslant m+1[/math], равны нулю, то есть:

[math]\sum\limits_{k=1}^n (\binom{n-1}{k-1} \frac{n!}{k!} \times (m)_k)=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{k-1} \frac{n!}{k!} \times (m)_k)[/math]

Поделим обе части на [math]n![/math] и получим, что левая часть равна:

[math]\frac{(n+m-1)!}{(m-1)!n!}=\frac{(n+m-1)!}{((n+m-1)-n)!n!}=\binom{n+m-1}{n}[/math]

а правая часть будет равна:

[math]\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!(n-k)!}\times\frac{1}{k!}\times\frac{m!}{(m-k)!})=\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!(n-k)!}\times\frac{m!}{k!(m-k)!})[/math]

[math]=\sum\limits_{k=1}^{min(m,n)} (\frac{(n-1)!}{(k-1)!((n-1)-(k-1))!}\times\frac{m!}{k!(m-k)!})=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{k-1}\times\binom{m}{k})[/math]

То есть мы хотим теперь доказать тождество:

[math]\binom{n+m-1}{n}=\sum\limits_{k=1}^{min(m,n)} (\binom{n-1}{n-k}\times\binom{m}{k})[/math]

Это тождество очевидно из комбинаторики, так как обе части равны числу способов выбрать из [math]n+m-1[/math] элементов, разделённых на два множества по [math]n-1[/math] и [math]m[/math] элементов, [math]n[/math] элементов. С одной стороны нельзя не признать, что это левая часть тождества по определению сочетания. С другой стороны нельзя не согласиться, что это правая часть тождества, в котором [math]k[/math] означает количество элементов, берущихся из множества размера [math]m[/math], а [math]n-k[/math] из второго множества размера [math]n-1[/math].

Многочлены, стоящие в левой и правой частях тождества, оказались равны в [math]n+1[/math] точке и при этом имеют степень не больше [math]n[/math], то есть они формально совпадают.
[math]\triangleleft[/math]

Гамма функция

Растущий факториал может быть продолжен на вещественные значения [math]n[/math], но с использованием Гамма функции[5] при условии, что [math]x[/math] и [math]x+n[/math] вещественные числа, но не отрицательные целые.

Утверждение:
[math]x^{(n)}=\frac{\Gamma(x+n)}{\Gamma(x)}[/math]
[math]\triangleright[/math]
[math]\Gamma(z+1) = z\Gamma(z)[/math] — для комплексного [math]z[/math].

Значит, это тождество верно и для [math]z=x[/math], где [math]x[/math] — вещественное число. То есть:

[math]\Gamma(x) = (x-1)\Gamma(x-1)[/math] — для вещественного [math]x[/math].

Заметим тогда, что:

[math]\Gamma(x+n) = ((x+n)-1)\cdot\Gamma((x+n)-1) = ((x+n)-1)(x+n-2)\cdot\Gamma((x+n)-2)[/math]

[math]= \cdots = ((x+n)-1)((x+n)-2)\cdots((x+n)-n)\cdot\Gamma((x+n)-n)[/math]
[math]= ((x+n)-1)((x+n)-2)\cdots x\cdot\Gamma(x)[/math]

Значит:

[math]\frac{\Gamma(x+n)}{\Gamma(x)} = \frac{((x+n)-1)((x+n)-2)\cdots x\cdot\Gamma(x)}{\Gamma(x)}[/math]

[math]= (x+n-1)(x+n-2)\cdots x = x(x+1)\cdots(x+n-1)=x^{(n)}[/math]
[math]\triangleleft[/math]

то же самое и про убывающий факториал:

Утверждение:
[math](x)_n=\frac{\Gamma(x+1)}{\Gamma(x-n+1)}[/math]
[math]\triangleright[/math]
[math]\Gamma(z+1) = z\Gamma(z)[/math] — для комплексного [math]z[/math].

Значит, это тождество верно и для [math]z=x[/math], где [math]x[/math] — вещественное число. То есть:

[math]\Gamma(x+1) = x\Gamma(x)[/math] — для вещественного [math]x[/math].

Заметим тогда, что:

[math]\Gamma(x+1) = x\cdot\Gamma(x) = x(x-1)\cdot\Gamma(x-1)[/math]

[math]= \cdots = x(x-1)\cdots(x-n+1)\cdot\Gamma(x-n+1)[/math]

Значит:

[math]\frac{\Gamma(x+1)}{\Gamma(x-n+1)} = \frac{x(x-1)\cdots(x-n+1)\cdot\Gamma(x-n+1)}{\Gamma(x-n+1)}[/math]

[math]= x(x-1)\cdots(x-n+1) = (x)_n[/math]
[math]\triangleleft[/math]

Дифференциал

Утверждение:
[math]\frac{\partial^n(x^a)}{\partial x^n} = (a)_n\,\, x^{a-n}[/math]
[math]\triangleright[/math]

[math]\frac{\partial^n(x^a)}{\partial x^n} =a\times\frac{\partial^{n-1}(x^{a-1})}{\partial x^{n-1}}=a(a-1)\times\frac{\partial^{n-2}(x^{a-2})}{\partial x^{n-2}}[/math]

[math]=a(a-1)\cdots (a-n+2)\times\frac{\partial(x^{a-(n-1)})}{\partial x}=(a)_n\,\, x^{a-n}[/math]
[math]\triangleleft[/math]

Обобщения

Существует обобщённый символ Похгаммера[6], используемый в многомерном математическом анализе. Также существует [math]q[/math]-аналог[7][math]q[/math]-Похгаммер символ[8].

Обобщение убывающего факториала — функция, определённая следующим образом:

[math][f(x)]^{k/-h}=f(x)\cdot f(x-h)\cdot f(x-2h)\cdots f(x-(k-1)h),[/math]

где [math]-h[/math] и [math]k[/math] — разница в убывающей арифметической прогрессии аргументов множителей и число множителей соответственно. Аналогичное обобщение растущего факториала:

[math][f(x)]^{k/h}=f(x)\cdot f(x+h)\cdot f(x+2h)\cdots f(x+(k-1)h).[/math]

Эта запись объединяет растущий и убывающий факториалы, которые [math][x^{k/1}][/math] и [math][x^{k/-1}][/math] соответственно.

Для арифметической функции [math]f: \mathbb{N} \rightarrow \mathbb{C}[/math] и параметров [math]x, t[/math] определено обобщенное факториальное произведение вида:

[math](x)_{n,f,t} = \prod\limits_{k=1}^{n-1} \left(x+\frac{f(k)}{t^k}\right)[/math]

См.также

Примeчания

  1. Ronald L. Graham, Donald E. Knuth and Oren Patashnik in their book Concrete Mathematics ([math]1988[/math]), Addison-Wesley, Reading MA. ISBN [math]0-201-14236-8[/math], pp. [math]47[/math],[math]48[/math]
  2. Injective function
  3. According to Knuth, The Art of Computer Programming, Vol. [math]1[/math], [math]3[/math]rd ed., p. [math]50[/math].
  4. Lah numbers
  5. Gamma function
  6. Generalized Pochhammer symbol
  7. q-analog
  8. q-Pochhammer symbol

Источники информации