Максимальное количество попарно непересекающихся остовных деревьев в графе с n вершинами — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
Строка 1: | Строка 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Попарно непересекающиеся остовные деревья== | ==Попарно непересекающиеся остовные деревья== | ||
{{Утверждение | {{Утверждение |
Текущая версия на 19:32, 4 сентября 2022
Содержание
Попарно непересекающиеся остовные деревья
Утверждение: |
Максимальное количество попарно непересекающихся остовных деревьев в графе с вершинами не более |
Очевидно, что среди графов с | вершинами наибольшее количество непересекающихся остовных деревьев может быть только в полном графе. Количество ребер в таком графе равно , а в каждом дереве ребро. Значит, в полном графе мы сможем построить не более остовных деревьев.
Построение
Описание алгоритма
Расположим вершины на окружности так, чтобы они являлись вершинами правильного многоугольника, и выберем начальную вершину (рис.
). Для вершин по часовой стрелке, начиная с этой вершины, будем строить остовные деревья. Для -ой вершины строим такой путь — до тех пор, пока не соединим все вершины. Это и будет остовным деревом. (рис. )Доказательство корректности
Докажем, что построенные с помощью такого алгоритма остовные деревья будут попарно непересекающимися. Для этого докажем, что никакие ребра не совпадут. Ребра могут совпасть только в том случае, если дуги, на которые эти ребра опираются, будут одинаковой длины. Заметим, что при построении каждого последующего дерева его ребра получаются из поворотов ребер предыдущего на длину , где — длина окружности. Рассмотрим первое построенное остовное дерево.(рис. ) В нем не более -х ребер имеют одинаковую длину дуги (длина дуги у ребра, расположенного на диаметре окружности, не совпадает с длиной дуги любого другого ребра данного остовного дерева). Значит, повороты только этих ребер могут совпасть между собой.- Докажем, что повороты ребра, расположенного на диаметре окружности, не совпадут друг с другом (если
Чтобы хоть какой-то поворот совпал, мы должны повернуть ребро на . Каждый раз мы поворачиваем ребро на . А так как мы поворачиваем ребро не более чем раз, то в сумме мы повернем его на
. А это значит, что никакие ребра не совпадут друг с другом. (рис. )
нечетно, то такого ребра не будет). - Докажем для остальных ребер. (рис.
Возьмем ребро, которое не лежит на диаметре окружности. В данном остовном дереве есть ребро, которое имеет такую же длину дуги. Ориентируем данные ребра в сторону часовой стрелки. Чтобы повороты этих ребер совпали, нужно, чтобы совпали их начала и концы. Покажем, что их начала никогда не совпадут. Чтобы начало первого ребра совпало с началом второго, нужно первое ребро повернуть хотя бы на половину длины окружности, то есть на . Для этого нам нужно сделать поворотов: . Но мы делаем только поворот. Аналогично с поворотом второго ребра. Для нечетных граф будет неполным, поэтому даже поворотов может не хватить для совпадения ребер. )
См. также
- Остовные деревья: определения, лемма о безопасном ребре
- Остовное дерево в планарном графе
- Минимально узкое остовное дерево
Источники информации
- Карпов Д. В. — Теория графов, стр 297