О нелинейных операторных уравнениях — различия между версиями
(→Простые итерации) |
м (rollbackEdits.php mass rollback) |
||
| (не показано 20 промежуточных версий 8 участников) | |||
| Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
| + | |||
| + | [[Теория Гильберта-Шмидта|<<]] | ||
Ранее мы рассматривали уравнения вида <tex> y = \lambda x - \mathcal{A} x </tex>, где <tex> y </tex> дано, так называемое "линейное уравнение 2 рода". Для ответа на вопрос "имеет ли решение это уравнение?" надо изучать <tex> \sigma(\mathcal{A}) </tex>. | Ранее мы рассматривали уравнения вида <tex> y = \lambda x - \mathcal{A} x </tex>, где <tex> y </tex> дано, так называемое "линейное уравнение 2 рода". Для ответа на вопрос "имеет ли решение это уравнение?" надо изучать <tex> \sigma(\mathcal{A}) </tex>. | ||
| Строка 44: | Строка 46: | ||
Второе слагаемое: <tex> \| \mathcal{T}'(\overline x) (x_n - \overline x)\| \le \| \mathcal{T}'(\overline x) \| \| x_n - \overline x \| \le q \| x_n - \overline x \| </tex> | Второе слагаемое: <tex> \| \mathcal{T}'(\overline x) (x_n - \overline x)\| \le \| \mathcal{T}'(\overline x) \| \| x_n - \overline x \| \le q \| x_n - \overline x \| </tex> | ||
| − | Складывая полученное: <tex> \varepsilon \| x_n - \overline x \| + q \| x_n - \overline x \| | + | Складывая полученное: <tex> \varepsilon \| x_n - \overline x \| + q \| x_n - \overline x \| \le (\frac {1-q}2 + q) \delta = \frac {1+q}2 \delta < \delta </tex>. |
| − | Окончательно мы получили, что <tex> x_n \in V_\delta (\overline x) \implies x_{n+1} \in V_\delta (\overline x) </tex>, то есть метод простых итераций определен корректно. Попутно мы также установили, что <tex> \| x_{n+1} - \overline x \| \le \frac {1+q}2 \| x_n - \overline x \| \le \ | + | Окончательно мы получили, что <tex> x_n \in V_\delta (\overline x) \implies x_{n+1} \in V_\delta (\overline x) </tex>, то есть метод простых итераций определен корректно. Попутно мы также установили, что <tex> \| x_{n+1} - \overline x \| \le \frac {1+q}2 \| x_n - \overline x \| \le \ldots \le (\frac {1+q}2)^{n+1} \| x_0 - \overline x \| \xrightarrow[n \to \infty]{} 0 </tex>, то есть <tex> x_n \to \overline x </tex>. |
}} | }} | ||
| Строка 58: | Строка 60: | ||
<tex> x_0 </tex> {{---}} начальное приближение. | <tex> x_0 </tex> {{---}} начальное приближение. | ||
| − | <tex> \mathcal{T} (\overline x) = \mathcal{T}(x_0) + \mathcal{T}'(x_0) \cdot (\overline x - x_0) + \ | + | <tex> \mathcal{T} (\overline x) = \mathcal{T}(x_0) + \mathcal{T}'(x_0) \cdot (\overline x - x_0) + \ldots </tex>. Обрежем последнюю часть: <tex> 0 = \mathcal{T}(x_0) + \mathcal{T}'(x_0) \cdot (\overline x - x_0) </tex>. |
Обозначим <tex> \Gamma(x_0) = (\mathcal{T}'(x_0))^{-1} </tex>. | Обозначим <tex> \Gamma(x_0) = (\mathcal{T}'(x_0))^{-1} </tex>. | ||
| Строка 134: | Строка 136: | ||
Пусть <tex> M </tex> {{---}} ограниченное замкнутое выпуклое подмножество B-пространства <tex> X </tex> и <tex> \mathcal{T} </tex> вполне непрерывно отображает <tex> M </tex> в себя. | Пусть <tex> M </tex> {{---}} ограниченное замкнутое выпуклое подмножество B-пространства <tex> X </tex> и <tex> \mathcal{T} </tex> вполне непрерывно отображает <tex> M </tex> в себя. | ||
| − | Тогда <tex> \exists x^* \in M : x^* = | + | Тогда <tex> \exists x^* \in M : x^* = \mathcal{T}x^* </tex>. |
}} | }} | ||
| Строка 152: | Строка 154: | ||
<tex> \forall \varepsilon > 0 </tex> по равномерной сходимости, <tex> \exists n_0: \| \mathcal{T}(x) - \mathcal{T}_{n_0}(x) \| < \varepsilon \, \forall x \in D </tex>. | <tex> \forall \varepsilon > 0 </tex> по равномерной сходимости, <tex> \exists n_0: \| \mathcal{T}(x) - \mathcal{T}_{n_0}(x) \| < \varepsilon \, \forall x \in D </tex>. | ||
| − | По предположению, <tex> \mathcal{T}_{n_0} </tex> {{---}} вполне непрерывный: существует конечная <tex> \varepsilon </tex>-сеть <tex> y_1, \ | + | По предположению, <tex> \mathcal{T}_{n_0} </tex> {{---}} вполне непрерывный: существует конечная <tex> \varepsilon </tex>-сеть <tex> y_1, \ldots, y_p </tex> для <tex> \mathcal{T}_{n_0}(D) </tex>. |
<tex> \forall y \in \mathcal{T}(D), y = \mathcal{T}x </tex>. Рассмотрим <tex> \mathcal{T}_{n_0}(x) \in \mathcal{T}_{n_0}(D) </tex> и подберем такое <tex> y_j </tex>, что <tex> \| y_j - \mathcal{T}_{n_0}x \| < \varepsilon </tex>. | <tex> \forall y \in \mathcal{T}(D), y = \mathcal{T}x </tex>. Рассмотрим <tex> \mathcal{T}_{n_0}(x) \in \mathcal{T}_{n_0}(D) </tex> и подберем такое <tex> y_j </tex>, что <tex> \| y_j - \mathcal{T}_{n_0}x \| < \varepsilon </tex>. | ||
| Строка 158: | Строка 160: | ||
<tex> \| y - y_j \| = \| \mathcal{T}x - y_j \| \le \| \mathcal{T}x - \mathcal{T}_{n_0}x \| + \| \mathcal{T}_{n_0}x - y_j \| </tex>. Первое слагаемое <tex> \le \varepsilon </tex> по выбору <tex> n_0 </tex> и равномерной сходимости. Второе слагаемое <tex> \le \varepsilon </tex> по выбору <tex> y_j </tex> из <tex> \varepsilon </tex>-сети. | <tex> \| y - y_j \| = \| \mathcal{T}x - y_j \| \le \| \mathcal{T}x - \mathcal{T}_{n_0}x \| + \| \mathcal{T}_{n_0}x - y_j \| </tex>. Первое слагаемое <tex> \le \varepsilon </tex> по выбору <tex> n_0 </tex> и равномерной сходимости. Второе слагаемое <tex> \le \varepsilon </tex> по выбору <tex> y_j </tex> из <tex> \varepsilon </tex>-сети. | ||
| − | Окончательно, <tex> \exists y_1, \ | + | Окончательно, <tex> \exists y_1, \ldots, y_p : \forall y \in \mathcal{T}(D) \exists y_j: \| y - y_j \| < 2 \varepsilon </tex>. Значит, мы получили <tex> 2\varepsilon </tex>-сеть для <tex> \mathcal{T}(D) </tex>. |
}} | }} | ||
| Строка 168: | Строка 170: | ||
Рассмотрим <tex> \mathcal{T}_n </tex> {{---}} последовательность вполне непрерывных операторов на <tex> D </tex>, <tex> \mathcal{T}_n \rightrightarrows \mathcal{T} </tex>. | Рассмотрим <tex> \mathcal{T}_n </tex> {{---}} последовательность вполне непрерывных операторов на <tex> D </tex>, <tex> \mathcal{T}_n \rightrightarrows \mathcal{T} </tex>. | ||
| − | Тогда множество <tex> \mathcal{T}_1(D) \cup \mathcal{T}_2(D) \cup \ | + | Тогда множество <tex> \mathcal{T}_1(D) \cup \mathcal{T}_2(D) \cup \ldots \cup \mathcal{T}_n(D) \cup \ldots \cup \mathcal{T}(D) </tex> относительно компактно. |
|proof= | |proof= | ||
| Строка 174: | Строка 176: | ||
По равномерной сходимости, <tex> \forall \varepsilon > 0 \, \exists n_0: \forall n > n_0 \forall x \in D: \| \mathcal{T}(x) - \mathcal{T}_n(x) \| < \varepsilon </tex>. | По равномерной сходимости, <tex> \forall \varepsilon > 0 \, \exists n_0: \forall n > n_0 \forall x \in D: \| \mathcal{T}(x) - \mathcal{T}_n(x) \| < \varepsilon </tex>. | ||
| − | Рассмотрим множество <tex> \mathcal{T}_1(D) \cup \mathcal{T}_2(D) \cup \ | + | Рассмотрим множество <tex> \mathcal{T}_1(D) \cup \mathcal{T}_2(D) \cup \ldots \cup \mathcal{T}_{n_0}(D) </tex>. Оно относительно компактно как конечное объединение относительно компактных множеств. |
| − | <tex> \forall \varepsilon > 0 </tex> рассмотрим <tex> \varepsilon </tex>-сеть для этого множества: <tex> y_1, \ | + | <tex> \forall \varepsilon > 0 </tex> рассмотрим <tex> \varepsilon </tex>-сеть для этого множества: <tex> y_1, \ldots, y_p </tex>. |
| − | Рассмотрим <tex> \bigcup\limits_{n=1}^{\infty} \mathcal{T}_n(D) \cup \mathcal{T}(D) </tex>. Проверим, что <tex> y_1, \ | + | Рассмотрим <tex> \bigcup\limits_{n=1}^{\infty} \mathcal{T}_n(D) \cup \mathcal{T}(D) </tex>. Проверим, что <tex> y_1, \ldots, y_p </tex> {{---}} <tex> k \varepsilon </tex>-сеть для этого множества, где число <tex> k </tex> определим позже. |
Возьмем произвольный <tex> y \in \bigcup\limits_{n=1}^{\infty} \mathcal{T}_n(D) \cup \mathcal{T}(D) </tex>. | Возьмем произвольный <tex> y \in \bigcup\limits_{n=1}^{\infty} \mathcal{T}_n(D) \cup \mathcal{T}(D) </tex>. | ||
| Строка 200: | Строка 202: | ||
Аналогичную оценку получаем, если <tex> y \in \mathcal{T}(D) </tex>. | Аналогичную оценку получаем, если <tex> y \in \mathcal{T}(D) </tex>. | ||
| − | В итоге, получили, что <tex> y_1, \ | + | В итоге, получили, что <tex> y_1, \ldots, y_p </tex> {{---}} <tex> 3\varepsilon </tex>-сеть для <tex> \bigcup\limits_{n=1}^{\infty} \mathcal{T}_n(D) \cup \mathcal{T}(D) </tex>. |
}} | }} | ||
| Строка 210: | Строка 212: | ||
<tex> \mathcal{T} </tex> {{---}} вполне непрерывен на ограниченном <tex> D </tex>, <tex> M = \mathcal{T}(D) </tex> {{---}} относительно компактно. | <tex> \mathcal{T} </tex> {{---}} вполне непрерывен на ограниченном <tex> D </tex>, <tex> M = \mathcal{T}(D) </tex> {{---}} относительно компактно. | ||
| − | <tex> \forall \varepsilon > 0 \exists y_1 \in M, \ | + | <tex> \forall \varepsilon > 0 \; \exists y_1 \in M, \ldots, y_p \in M </tex> {{---}} конечная <tex> \varepsilon </tex>-сеть. |
| − | Построим следующую функцию: <tex> \forall j = 1, \ | + | Построим следующую функцию: <tex> \forall j = 1, \ldots, p, \forall y \in M: </tex> |
<tex> \mu_j(y) = \begin{cases} | <tex> \mu_j(y) = \begin{cases} | ||
| Строка 219: | Строка 221: | ||
</tex> | </tex> | ||
| − | Легко проверить, что для любого <tex> j </tex> функция <tex> \mu_j </tex> непрерывна на <tex> M </tex>. { | + | Легко проверить, что для любого <tex> j </tex> функция <tex> \mu_j </tex> непрерывна на <tex> M </tex>. В самом деле, вне интервала <tex> (y_j - \varepsilon;\,y_j + \varepsilon) </tex> функция <tex> \mu_j </tex> непрерывна как константа, внутри интервала она непрерывна в силу непрерывности нормы, а кроме того <tex> \lim\limits_{y \rightarrow y_j \pm \varepsilon} (\varepsilon - \| y - y_j \|) = 0 = \mu_j(y_j \pm \varepsilon) </tex> |
Поскольку <tex> \{ y_j \} </tex> {{---}} <tex> \varepsilon </tex>-сеть, то <tex> \forall y </tex> все <tex> \mu_j(y) </tex> не могут быть равны нулю одновременно. | Поскольку <tex> \{ y_j \} </tex> {{---}} <tex> \varepsilon </tex>-сеть, то <tex> \forall y </tex> все <tex> \mu_j(y) </tex> не могут быть равны нулю одновременно. | ||
| Строка 234: | Строка 236: | ||
Коэффициенты <tex> \frac {\mu_j(y)} {S(y)} </tex> обозначим за <tex> \alpha_j(y) </tex>. Из определения следует, что <tex> \sum\limits_{j=1}^p \alpha_j(y) = 1 </tex>, то есть, <tex> P_\varepsilon(y) </tex> есть выпуклая комбинация точек <tex> \varepsilon </tex> сети для любого <tex> y </tex>. | Коэффициенты <tex> \frac {\mu_j(y)} {S(y)} </tex> обозначим за <tex> \alpha_j(y) </tex>. Из определения следует, что <tex> \sum\limits_{j=1}^p \alpha_j(y) = 1 </tex>, то есть, <tex> P_\varepsilon(y) </tex> есть выпуклая комбинация точек <tex> \varepsilon </tex> сети для любого <tex> y </tex>. | ||
| − | <tex> P_\varepsilon(M) \subset \mathcal{L}(y_1, \ | + | <tex> P_\varepsilon(M) \subset \mathcal{L}(y_1, \ldots, y_p) </tex> |
| − | Если <tex> M = \mathcal{T}(D) </tex> {{---}} выпуклое множество, то <tex> P_\varepsilon(y) \in M </tex>, как выпуклая комбинация точек <tex> y_1, \ | + | Если <tex> M = \mathcal{T}(D) </tex> {{---}} выпуклое множество, то <tex> P_\varepsilon(y) \in M </tex>, как выпуклая комбинация точек <tex> y_1, \ldots, y_p </tex>. |
| − | Рассмотрим <tex> \| P_\varepsilon (\mathcal{T} x) - \mathcal{T} x \| = \| \sum\limits_{j=1}^p \alpha_j y_j - \sum\limits_{j=1}^p \alpha_j y \| = \| \sum\limits_{j=1}^p \alpha_j (y_j - y) \| </tex>. | + | Рассмотрим <tex> \| P_\varepsilon (\mathcal{T} x) - \mathcal{T} x \| = \| \sum\limits_{j=1}^p \alpha_j(y) \cdot y_j - \sum\limits_{j=1}^p \alpha_j(y) \cdot y \| = \| \sum\limits_{j=1}^p \alpha_j(y) \cdot (y_j - y) \| </tex>. |
| − | Если <tex> \| y_j - y \| > \varepsilon </tex>, то <tex> \alpha_j(y) = 0 </tex>, поэтому, продолжая цепочку неравенств, <tex> \| \sum\limits_{j=1}^p \alpha_j (y_j - y) \| \le \varepsilon \sum\limits_{j=1}^p \alpha_j \le \varepsilon </tex>. | + | Если <tex> \| y_j - y \| > \varepsilon </tex>, то <tex> \alpha_j(y) = 0 </tex>, поэтому, продолжая цепочку неравенств, <tex> \| \sum\limits_{j=1}^p \alpha_j(y) \cdot (y_j - y) \| \le \varepsilon \sum\limits_{j=1}^p \alpha_j(y) \le \varepsilon </tex>. |
Получили, что <tex> P_\varepsilon \mathcal{T} \rightrightarrows \mathcal{T} </tex>, когда <tex> \varepsilon \to 0 </tex>. | Получили, что <tex> P_\varepsilon \mathcal{T} \rightrightarrows \mathcal{T} </tex>, когда <tex> \varepsilon \to 0 </tex>. | ||
| − | Каждый из операторов <tex> P_\varepsilon \mathcal{T} </tex> конечномерен: <tex> \ | + | Каждый из операторов <tex> P_\varepsilon \mathcal{T} </tex> конечномерен: <tex> \operatorname{dim} R(P_\varepsilon \mathcal{T}) < +\infty </tex>. |
По неравенству, полученному чуть выше, также имеем <tex> \| P_\varepsilon (\mathcal{T} x) - \mathcal{T} x \| \le \varepsilon \, \forall x \in D </tex>. | По неравенству, полученному чуть выше, также имеем <tex> \| P_\varepsilon (\mathcal{T} x) - \mathcal{T} x \| \le \varepsilon \, \forall x \in D </tex>. | ||
| Строка 259: | Строка 261: | ||
<tex> M </tex> {{---}} выпуклое ограниченное множество, оператор <tex> \mathcal{T} : M \to M </tex> является вполне ограниченным. | <tex> M </tex> {{---}} выпуклое ограниченное множество, оператор <tex> \mathcal{T} : M \to M </tex> является вполне ограниченным. | ||
| − | Определим последовательность <tex> \mathcal{T}_n = P_{\frac 1n} \mathcal{T} </tex>. <tex> \mathcal{T}_n : | + | Определим последовательность <tex> \mathcal{T}_n = P_{\frac 1n} \mathcal{T} </tex>. <tex> \mathcal{T}_n : M \to M_n </tex>, где <tex> M_n </tex> {{---}} подмножество конечномерного пространства. Каждое <tex> M_n </tex> является замкнутым выпуклым множеством, поскольку является линейной оболочкой соответствующей <tex>\frac{1}{n}</tex>-сети. |
| − | |||
| − | |||
| − | Учитывая, что <tex> M_1 \cup M_2 \cup \ | + | Применяя теорему Брауэра, получаем, что <tex> \forall n: \exists x_n \in M_n: x_n = \mathcal{T}_n x_n = x_n </tex>. |
| + | Учитывая, что <tex> M_1 \cup M_2 \cup \ldots </tex> относительно компактно, из <tex> \{ x_n \} </tex> можно выделить сходящуюся подпоследовательность: <tex> \exists x_{n_k} \to x^* \in M </tex>. | ||
<tex> \| x^* - \mathcal{T}x^* \| = \| \lim(x_{n_k} - \mathcal{T} x_{n_k}) \| </tex>. | <tex> \| x^* - \mathcal{T}x^* \| = \| \lim(x_{n_k} - \mathcal{T} x_{n_k}) \| </tex>. | ||
| Строка 273: | Строка 274: | ||
Откуда, окончательно, получаем, что искомый предел равен <tex> 0 </tex>, и <tex> \| x^* - \mathcal{T} x^* \| = 0 </tex>, и <tex> x^* = \mathcal{T} x^* </tex>. Теорема Шаудера доказана. | Откуда, окончательно, получаем, что искомый предел равен <tex> 0 </tex>, и <tex> \| x^* - \mathcal{T} x^* \| = 0 </tex>, и <tex> x^* = \mathcal{T} x^* </tex>. Теорема Шаудера доказана. | ||
| − | + | [[Файл:Thats_all_forks.jpg|600px]] | |
| − | |||
[[Категория: Функциональный анализ 3 курс]] | [[Категория: Функциональный анализ 3 курс]] | ||
Текущая версия на 19:33, 4 сентября 2022
Ранее мы рассматривали уравнения вида , где дано, так называемое "линейное уравнение 2 рода". Для ответа на вопрос "имеет ли решение это уравнение?" надо изучать .
Сложнее, когда задано уравнение вида или , где — произвольный оператор из в .
В этом параграфе мы покажем 3 способа решения таких уравнений.
Содержание
Простые итерации
Решаем уравнение . Составляем последовательность и изучаем сходимость последовательности .
Если — непрерывный оператор, то и, по единственности предела, получаем .
Во втором семестре у нас было определение производной Фреше: . — линейный ограниченный оператор.
| Теорема (Локальная теорема о простой итерации): |
Пусть известно, что существует и .
Тогда существует такой шар , что если , то:
|
| Доказательство: |
|
Положим . В силу определения производной Фреше существует . Убедимся в том, что такая подходит в качестве радиуса шара из условия теоремы: Предположим, что .
. Рассмотрим первое слагаемое: , а значит, . Второе слагаемое: Складывая полученное: . Окончательно мы получили, что , то есть метод простых итераций определен корректно. Попутно мы также установили, что , то есть . |
Метод Ньютона-Канторовича
Ньютоном был предложен классический способ решения уравнений (метод касательных). До Ньютона использовали метод половинного деления. В двадцатом веке Канторович перенес соответствующие методы на операторные уравнения вида — непрерывный оператор из в , — нормированное пространство.
Предположим, что . Получим схему метода Ньютона-Канторовича.
— начальное приближение.
. Обрежем последнюю часть: .
Обозначим .
Домножим равенство с обеих сторон на :
.
.
Теперь положим и получим итерацию метода Ньютона-Канторовича для функции
Покажем, что , то есть из условия локальной теоремы о простой итерации.
| Утверждение: |
|
Запишем через значение :
, откуда . Подставим это равенство в выражение выше:
. Итого: , откуда |
Теорема Шаудера
Рассмотрим другую идею решения . Оно основывается на том факте, что если функция отображает отрезок в себя, то существует такая точка .
Обобщение этого факта для называется теоремой Брауэра:
| Теорема (Брауэр, о неподвижной точке): |
Пусть — ограниченное выпуклое замкнутое подмножество , непрерывно отображает в себя. Тогда . |
Как перенести этот факт в бесконечномерный случай? Ответ на это дает теорема Шаудера:
| Определение: |
| Пусть — B-пространство, — ограничено в . — непрерывное отображение . Говорят, что вполне непрерывно на , если — относительно компактно в . |
| Теорема (Шаудер, о неподвижной точке): |
Пусть — ограниченное замкнутое выпуклое подмножество B-пространства и вполне непрерывно отображает в себя.
Тогда . |
Замечание: теорему Брауэра нельзя будет назвать частным случаем теоремы Шаудера, так как при доказательстве теоремы Шаудера мы сошлемся на теорему Брауэра. У теоремы Шаудера также очень частое практическое применение.
Вспомогательные факты
| Утверждение (Факт Первый): |
Рассмотрим — последовательность вполне непрерывных операторов на , ().
Тогда вполне непрерывен на . |
|
по равномерной сходимости, . По предположению, — вполне непрерывный: существует конечная -сеть для . . Рассмотрим и подберем такое , что . . Первое слагаемое по выбору и равномерной сходимости. Второе слагаемое по выбору из -сети. Окончательно, . Значит, мы получили -сеть для . |
| Утверждение (Факт Второй): |
Рассмотрим — последовательность вполне непрерывных операторов на , .
Тогда множество относительно компактно. |
|
По равномерной сходимости, . Рассмотрим множество . Оно относительно компактно как конечное объединение относительно компактных множеств. рассмотрим -сеть для этого множества: . Рассмотрим . Проверим, что — -сеть для этого множества, где число определим позже. Возьмем произвольный . Рассмотрим, в какое из множеств попадает выбранный нами . Пусть, для начала, . Если , то . Пусть .
. Первые два слагаемых по равномерной сходимости, третье по выбору -сети для . Аналогичную оценку получаем, если . В итоге, получили, что — -сеть для . |
Проекторы Шаудера
Основная идея данного доказательства — построение проекторов Шаудера.
— вполне непрерывен на ограниченном , — относительно компактно.
— конечная -сеть.
Построим следующую функцию:
Легко проверить, что для любого функция непрерывна на . В самом деле, вне интервала функция непрерывна как константа, внутри интервала она непрерывна в силу непрерывности нормы, а кроме того
Поскольку — -сеть, то все не могут быть равны нулю одновременно.
Обозначим . По предыдущему утверждению,
| Определение: |
| — проектор Шаудера. |
Коэффициенты обозначим за . Из определения следует, что , то есть, есть выпуклая комбинация точек сети для любого .
Если — выпуклое множество, то , как выпуклая комбинация точек .
Рассмотрим .
Если , то , поэтому, продолжая цепочку неравенств, .
Получили, что , когда .
Каждый из операторов конечномерен: .
По неравенству, полученному чуть выше, также имеем .
В итоге мы имеем следующую теорему:
| Теорема: |
Проекторы Шаудера оператора равномерно сходятся к : , то есть любой вполне непрерывный оператор является равномерным пределом последовательности конечномерных операторов. |
Соединяя с теоремой Брауэра, получим:
— выпуклое ограниченное множество, оператор является вполне ограниченным.
Определим последовательность . , где — подмножество конечномерного пространства. Каждое является замкнутым выпуклым множеством, поскольку является линейной оболочкой соответствующей -сети.
Применяя теорему Брауэра, получаем, что . Учитывая, что относительно компактно, из можно выделить сходящуюся подпоследовательность: .
.
По выбору : .
По равномерной сходимости : , начиная с для всех .
Откуда, окончательно, получаем, что искомый предел равен , и , и . Теорема Шаудера доказана.