Ультраинвариантные подпространства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=

Текущая версия на 19:33, 4 сентября 2022

Определение:
Пусть [math]\mathcal{A}: X \rightarrow X[/math] — автоморфизм. Подпространство [math]L[/math] линейного пространства [math]X[/math] называется инвариантным подпространством (ИПП) линейного оператора [math]\mathcal{A}[/math], если [math]\forall x: \mathcal{A}x \in L \ (\mathcal{A}(L)\subset L) [/math]


Лемма:
Если [math]L_1, L_2[/math] — ИПП [math]\mathcal{A}[/math], то [math]L_1 \cap L_2[/math] и [math]L_1+L_2[/math] тоже ИПП.


Определение:
[math]L[/math] — ИПП [math]\mathcal{A}[/math], [math]\mathcal{A}_L: L \rightarrow L[/math], но [math]\forall x \in L: \mathcal{A}_L x=\mathcal{A} x[/math], тогда [math]\mathcal{A}_L=\mathcal{A} \vert_L[/math] называют частью линейного оператора [math]\mathcal{A}[/math] в [math]L[/math] (сужение оператора [math]\mathcal{A}[/math] на [math]L[/math])


Определение:
[math]L_1, L_2[/math] — ИПП [math]\mathcal{A}[/math], [math]X=L_1 \dotplus L_2[/math] тогда [math]L_1, L_2[/math] называют ультраинвариантным подпространством (УИПП).


Определение:
[math]L[/math] — УИПП [math]\mathcal{A}[/math], тогда часть [math]\mathcal{A}_L[/math] называют компонентой [math]\mathcal{A}[/math] в УИПП [math]L[/math]


Теорема:
[math]L_1, L_2[/math] — УИПП [math]\mathcal{A} \ (X=L_1 \dotplus L_2)[/math], тогда [math]\mathcal{A}=\mathcal{A}_{L_1}\mathcal{P}_{L_1}^{\Vert L_2} + \mathcal{A}_{L_2}\mathcal{P}_{L_2}^{\Vert L_1}[/math]
Доказательство:
[math]\triangleright[/math]

[math] X=L_1 \dotplus L_2 \Rightarrow \forall x=x_1+x_2=\mathcal{P}_{L_1}^{\Vert L_2}x+\mathcal{P}_{L_2}^{\Vert L_1}x \ (x_1 \in L_1, x_2 \in L_2) \ (*)[/math] - разложение единственно.

[math]\mathcal{A}(*)=\mathcal{A}_{L_1}(\mathcal{P}_{L_1}^{\Vert L_2}x) + \mathcal{A}_{L_2}(\mathcal{P}_{L_2}^{\Vert L_1}x)[/math] — теорема доказана.
[math]\triangleleft[/math]


Определение:
[math]X=L_1 \dotplus L_2[/math] и [math]\mathcal{A}=\mathcal{A}_{L_1}\mathcal{P}_{L_1}^{\Vert L_2} + \mathcal{A}_{L_2}\mathcal{P}_{L_2}^{\Vert L_1}[/math], тогда [math]\mathcal{A}=\mathcal{A}_{L_1} \dotplus \mathcal{A}_{L_2}[/math] называется прямой суммой линейных операторов [math] \mathcal{A}_{L_1}[/math] и [math]\mathcal{A}_{L_2}[/math]


Утверждение:
Оператор [math]\mathcal{A}[/math] представим прямой суммой своих компонент в УИПП.


Определение:
Проектор на УИПП называется ультрапроектором.


Определение:
УИПП называется минимальным, если оно не содержит внутри себя не тривиальных УИПП меньшей размерности.


Утверждение:
Различные минимальные УИПП дизъюнктны.
Утверждение:
Число попарно дизъюнктных минимальных УИПП конечно (оператор в конечномерном пространстве).