Формула полной вероятности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Пример 2 - согласно условию, вероятность 90% в первой и третьей урне, а не в первой и второй. При вашем решении ответ будет не 0.775, а 0.875)
м (rollbackEdits.php mass rollback)
 
(не показана 1 промежуточная версия 1 участника)
(нет различий)

Текущая версия на 19:35, 4 сентября 2022

Формула полной вероятности (англ. law of total probability) позволяет вычислить вероятность интересующего события [math] A [/math] через вероятности его произойти при выполнении гипотез с заданной вероятностью. Формула полной вероятности требуется, когда необходимо узнать вероятность совершения некоторого события, если его совершение зависит от нескольких условий. Например, можно узнать вероятность принятия законопроекта, зная, с какой вероятностью его примет каждая партия. Ещё формула применяется в задачах о нахождении среднего качества продукции, выпускаемой цехом. Вот пример:

Задача:
Из [math]40[/math] деталей [math]10[/math] изготовлены в первом цехе, [math]25[/math] — во втором, а остальные — в третьем. Первый и третий цехи дают продукцию отличного качества с вероятностью [math]0.9[/math], второй цех — с вероятностью [math]0.7[/math]. Какова вероятность того, что взятая наудачу деталь будет отличного качества?


Теорема

Определение:
Полной системой событий называется не более чем счётное множество событий [math] B_1,\ B_2,\ \dots,\ B_{n} [/math], таких что:
  1. все события попарно несовместны: [math] \forall i,\ j = 1,\ 2,\ \dots,\ n\ B_{i} \cap B_{j} = \varnothing [/math]
  2. их объединение образует пространство элементарных исходов: [math]P(B_{i})~\gt ~0,~B_1~\cup ~B_2~\cup\ \dots ~\cup ~B_n = \Omega [/math]

В этом случае события [math]B_i[/math] ещё называются гипотезами.

Теорема (формула полной вероятности):
Вероятность события [math] A~\subset ~\Omega [/math], которое может произойти только вместе с одним из событий [math] B_1, B_2, \dots, B_{n} [/math], образующих

полную систему событий, равна сумме произведений вероятностей гипотез на условные вероятности события, вычисленные соотвественно при каждой из гипотез.

[math] {P}(A) = \sum\limits_{i=1}^{n} {P}( A \mid B_i) {P}(B_i) [/math]
Доказательство:
[math]\triangleright[/math]

Так как события [math]\{B_i\}_{i=1}^{n} [/math] образуют полную систему событий, то по определению событие [math] A [/math] можно представить следующим образом:

[math] A~=~A \cap \Omega ~=~ A \cap \big( \bigcup\limits_{i=1}^{n} B_{i} \big) ~=~ \bigcup\limits_{i=1}^{n} ( A \cap B_{i} ) [/math]

События [math]\{B_i\}_{i=1}^{n} [/math] попарно несовместны, значит, события [math] (A\cap B_{i}) [/math] тоже несовместны. Тогда, воспользовавшись определением условной вероятности, получаем:

[math] {P}(A)~=~{P}\Big( \bigcup\limits_{i=1}^{n} ( A \cap B_{i} ) \Big) ~=~ \sum\limits_{i=1}^{n} {P}(A\cap B_i) ~=~ \sum\limits_{i=1}^{n} {P}(A \mid B_i){P}(B_i) [/math]
[math]\triangleleft[/math]

Использование формулы полной вероятности

Рассмотрим два примера

Пример 1

Задача:
Имеются [math]3[/math] одинаковые урны с шарами. В первой из них находится [math]3[/math] белых и [math]4[/math] черных шара, во второй — [math]2[/math] белых и [math]5[/math] чёрных, а в третьей — [math]10[/math] чёрных шаров. Из случайно выбранной урны наудачу вынут шар. С какой вероятностью он окажется белым?

Решение. Будем считать события [math] B_1, B_2, B_3 [/math] выбором урны с соотвествующим номером, а событие [math]A[/math] — выбором белого шара. По условию задачи все события выбора урны равновероятны, значит:

[math] {P}(B_1)~=~{P}(B_2)~=~{P}(B_3)~=~ \genfrac{}{}{}{0}{1}{3} [/math]

Теперь найдём вероятность события [math]A[/math] при выборе каждой урны:

[math] {P}(A \mid B_1) = \genfrac{}{}{}{0}{3}{7} ,~ {P}(A \mid B_2) = \genfrac{}{}{}{0}{2}{7} ,~ {P}(A \mid B_3) = 0. [/math]

В результате получаем [math] {P}(A) ~=~ \genfrac{}{}{}{0}{1}{3} \cdot \genfrac{}{}{}{0}{3}{7} +\genfrac{}{}{}{0}{1}{3} \cdot \genfrac{}{}{}{0}{2}{7} +\genfrac{}{}{}{0}{1}{3} \cdot 0 ~\approx ~ 0{.}238 [/math]

Пример 2

Рассмотрим пример из введения.

Решение. Обозначим за событие [math] A [/math] — выбрана деталь отличного качества, тогда событие [math] B_i [/math] — выбранная деталь изготовлена в [math]i[/math] цехе (где [math] i ~=~ 1,2,3 [/math]).

[math] {P}(B_1) = \genfrac{}{}{}{0}{10}{40} = \genfrac{}{}{}{0}{1}{4},~ {P}(B_2) = \genfrac{}{}{}{0}{25}{40} = \genfrac{}{}{}{0}{5}{8},~ {P}(B_3) = \genfrac{}{}{}{0}{5}{40} = \genfrac{}{}{}{0}{1}{8}. [/math]

По условию задачи, вероятности производства продукции отличного качества в каждом цехе:

[math] {P}(A \mid B_1) = {P}(A \mid B_3) = \genfrac{}{}{}{0}{9}{10},~ {P}(A \mid B_2) = \genfrac{}{}{}{0}{7}{10}. [/math]

Теперь воспользуемся формулой полной вероятности для нахождения искомой вероятности:

[math] {P}(A) ~=~ \sum\limits_{i=1}^3 {P}(A \mid B_i) {P}(B_i) ~=~ \genfrac{}{}{}{0}{9}{10} \cdot \genfrac{}{}{}{0}{1}{4} +\genfrac{}{}{}{0}{7}{10} \cdot \genfrac{}{}{}{0}{5}{8} +\genfrac{}{}{}{0}{9}{10} \cdot \genfrac{}{}{}{0}{1}{8} ~=~ 0{.}775 [/math]

См. также

Источники информации