LL(k)-грамматики, множества FIRST и FOLLOW — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
| Строка 1: | Строка 1: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
Наибольший интерес в построении синтаксических анализаторов (парсеров) представляют LL(1)-грамматики, так как для них возможно построение нисходящих парсеров без возврата, то есть без корректировки выбранных правил в [[Формальные грамматики | грамматике]]. LL(1)-грамматики являются подмножеством [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора#csgrammar | КС-грамматик]]. Однако для достаточно большого количества [[Основные определения, связанные со строками#deflanguage | формальных языков]] можно построить LL(1)-грамматику, например, для языка арифметических выражений и даже для некоторых языков программирования, в частности можно и для языка Java. | Наибольший интерес в построении синтаксических анализаторов (парсеров) представляют LL(1)-грамматики, так как для них возможно построение нисходящих парсеров без возврата, то есть без корректировки выбранных правил в [[Формальные грамматики | грамматике]]. LL(1)-грамматики являются подмножеством [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора#csgrammar | КС-грамматик]]. Однако для достаточно большого количества [[Основные определения, связанные со строками#deflanguage | формальных языков]] можно построить LL(1)-грамматику, например, для языка арифметических выражений и даже для некоторых языков программирования, в частности можно и для языка Java. | ||
Текущая версия на 19:35, 4 сентября 2022
Наибольший интерес в построении синтаксических анализаторов (парсеров) представляют LL(1)-грамматики, так как для них возможно построение нисходящих парсеров без возврата, то есть без корректировки выбранных правил в грамматике. LL(1)-грамматики являются подмножеством КС-грамматик. Однако для достаточно большого количества формальных языков можно построить LL(1)-грамматику, например, для языка арифметических выражений и даже для некоторых языков программирования, в частности можно и для языка Java.
Содержание
LL(k)-грамматика
Дадим теперь формально определение LL(k)-грамматики.
| Определение: |
| Пусть — КС-грамматика. Рассмотрим два произвольных левосторонних вывода слова в этой грамматике:
где и — цепочки из терминалов, уже разобранная часть слова , — нетерминал грамматики, в которой есть правила и , причём — последовательности из терминалов и нетерминалов. |
LL(1)-грамматика является частным случаем. Её определение почти такое же, только вместо строки один символ .
Неформально это означает, что, посмотрев на очередной символ после уже выведенной части слова, можно однозначно определить, какое правило из грамматики выбрать.
FIRST и FOLLOW
Ключевую роль в построении парсеров для LL(1)-грамматик играют множества и .
Пусть — символ из алфавита , — строки из нетерминалов и терминалов (возможно пустые), — нетерминалы грамматики (начальный и произвольный соответственно), — символ окончания слова. Тогда определим и следующим образом:
| Определение: |
| Определение: |
Другими словами, — все символы (терминалы), с которых могут начинаться всевозможные выводы из , а — всевозможные символы, которые встречаются после нетерминала во всех небесполезных правилах грамматики.
Замечание: более общим случаем множества является множество , однако в данном конспекте оно не используется.
| Определение: |
Примеры
Множества и могут отличаться даже для одной грамматики, если она задана разными правилами. Рассмотрим пример двух различных грамматик для языка правильных скобочных последовательностей.
| Правило | FIRST | FOLLOW |
|---|---|---|
Теорема о связи LL(1)-грамматики с множествами FIRST и FOLLOW
Далее будет показано, как множества и связаны с понятием LL(1)-грамматики.
| Теорема: |
— LL(1)-грамматика
|
| Доказательство: |
|
Предположим, что данная грамматика не будет LL(1)-грамматикой. Значит, у какого-то слова существует два различных левосторонних вывода. Но это противоречит тому, что . Аналогично проверятся второе условие. Если, например, , то , и
Предположим, что есть два различных правила и таких, что . Тогда: Последний переход можно совершить, так как лежит в пересечении множеств двух правил вывода. Так как грамматика является LL(1)-грамматикой, то из определения следует, что . Это противоречит предположению, что и — различные правила. Второе условие проверяется аналогичным образом. |
Следствия
Сформулируем несколько важных cледствий из теоремы.
Левая рекурсия
| Утверждение (1): |
Грамматика cодержит левую рекурсию не является LL(1)-грамматикой. |
|
Если грамматика содержит левую рекурсию, значит, в ней существует какой-то нетерминал с правилами , где — строка из терминалов и нетерминалов, не начинающаяся с . Тогда понятно, что , и это противоречит первому условию теоремы. |
Чтобы избавиться от левой рекурсии, можно воспользоваться алгоритмом устранения левой рекурсии.
Левая факторизация
| Утверждение (2): |
Грамматика cодержит правое ветвление не является LL(1)-грамматикой. |
|
Наличие в грамматике правого ветвления означает, что существует правило . Очевидно, что . Поэтому грамматика не будет LL(1)-грамматикой по первому условию теоремы. |
Алгоритм устранения правого ветвленения
Чтобы избавиться от правого ветвления, нужно воспользоваться алгоритмом левой факторизации. Его суть заключается в следующем: для каждого нетерминала ищем самый длинный префикс, общий для двух или более правил вывода из . Важно, чтобы как можно больше строк имело общий префикс, и можно было вынести части правил после общего префикса в отдельный нетерминал. Более формально, рассмотрим правила
Причём , а наибольший общий префикс и ) равен . Тогда изменим грамматику следующим образом, введя новый нетерминал :
Алгоритм завершится, когда в грамматике не будет правого ветвления. Он отработает конечное число шагов, так как каждый раз длина правой части правил уменьшается ходя бы на единицу, а тривиальные префиксы мы не рассматриваем. К тому же, алгоритм не меняет язык грамматики, следовательно, является корректным.
Замечание: отсутствие левой рекурсии и правого ветвления в грамматике не является достаточным условием того, что она будет LL(1)-грамматикой. После их устранения грамматика всё ещё может остаться не LL(1)-грамматикой.
См. также
Источники информации
- Wikipedia — LL grammar
- LL(k)-грамматики и трансляция
- Альфред Ахо, Рави Сети, Джеффри Ульман. Компиляторы. Принципы, технологии, инструменты. Издательство Вильямс, 2003. ISBN 5-8459-0189-8