Вычисления с оракулом — различия между версиями
(Новая страница: «В теории вычислений и теории сложности Машиной с оракулом называют абстрактную машину, ...») |
м (rollbackEdits.php mass rollback) |
||
(не показано 9 промежуточных версий 4 участников) | |||
Строка 1: | Строка 1: | ||
− | В теории вычислений и теории сложности | + | В теории вычислений и теории сложности "машиной с оракулом" называют абстрактную машину, предназначенную для решения какой-либо проблемы разрешимости. Такая машина может быть представлена как машина Тьюринга, дополненная оракулом с неизвестным внутренним устройством. Постулируется, что оракул способен решить определенные проблемы разрешимости за один такт машины Тьюринга. Машина Тьюринга взаимодействует с оракулом путем записи на свою ленту входных данных для оракула и затем его запуском на исполнение. За один шаг оракул вычисляет функцию, стирает входные данные и пишет выходные данные на ленту. Иногда машина Тьюринга описывается как имеющая две ленты, одна предназначена для входных данных оракула, другая — для выходных. |
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Оракул — | + | Оракул — абстракция, вычисляющая за <tex>O(1)</tex> времени, верно ли, что <tex>x</tex> принадлежит множеству <tex>A</tex>. |
}} | }} | ||
Сложностный класс задач, решаемых алгоритмом из класса <tex>\mathrm{C}</tex> с оракулом для языка <tex>\mathrm{A}</tex>, обозначают <tex>\mathrm{C^A}</tex>. | Сложностный класс задач, решаемых алгоритмом из класса <tex>\mathrm{C}</tex> с оракулом для языка <tex>\mathrm{A}</tex>, обозначают <tex>\mathrm{C^A}</tex>. | ||
Если <tex>\mathrm{A}</tex> — множество языков, то <tex>\mathrm{C^A} =\bigcup\limits_{D \in A}\mathrm{C^D}</tex>. | Если <tex>\mathrm{A}</tex> — множество языков, то <tex>\mathrm{C^A} =\bigcup\limits_{D \in A}\mathrm{C^D}</tex>. | ||
+ | == Сведение по Тьюрингу == | ||
+ | |||
+ | В теории вычислимости сведение по Тьюрингу задачи A к задаче B — это сведение, которое решает A, предполагая, что B уже известно. Это можно понимать как алгоритм, который может быть использован для решения A, если в его распоряжении имеются подпрограммы для решения B. Более формально, сведение по Тьюрингу является функцией, вычислимой машиной с оракулом для В. | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | Даны два множества натуральных чисел <tex>A</tex> и <tex>B</tex>, тогда говорим, что <tex>A</tex> сводится по Тьюрингу к <tex>B</tex> (<tex>A \leq_{T} B</tex>), если есть машина с оракулом <tex>B</tex>, которая вычисляет характеристическую функцию <tex>A</tex>. В этом случае мы также говорим, что <tex>A</tex> является <tex>B</tex>-рекурсивным и <tex>B</tex>-вычислимым. | ||
+ | }} | ||
[[Категория: Теория сложности]] | [[Категория: Теория сложности]] |
Текущая версия на 19:37, 4 сентября 2022
В теории вычислений и теории сложности "машиной с оракулом" называют абстрактную машину, предназначенную для решения какой-либо проблемы разрешимости. Такая машина может быть представлена как машина Тьюринга, дополненная оракулом с неизвестным внутренним устройством. Постулируется, что оракул способен решить определенные проблемы разрешимости за один такт машины Тьюринга. Машина Тьюринга взаимодействует с оракулом путем записи на свою ленту входных данных для оракула и затем его запуском на исполнение. За один шаг оракул вычисляет функцию, стирает входные данные и пишет выходные данные на ленту. Иногда машина Тьюринга описывается как имеющая две ленты, одна предназначена для входных данных оракула, другая — для выходных.
Определение: |
Оракул — абстракция, вычисляющая за | времени, верно ли, что принадлежит множеству .
Сложностный класс задач, решаемых алгоритмом из класса
с оракулом для языка , обозначают . Если — множество языков, то .Сведение по Тьюрингу
В теории вычислимости сведение по Тьюрингу задачи A к задаче B — это сведение, которое решает A, предполагая, что B уже известно. Это можно понимать как алгоритм, который может быть использован для решения A, если в его распоряжении имеются подпрограммы для решения B. Более формально, сведение по Тьюрингу является функцией, вычислимой машиной с оракулом для В.
Определение: |
Даны два множества натуральных чисел | и , тогда говорим, что сводится по Тьюрингу к ( ), если есть машина с оракулом , которая вычисляет характеристическую функцию . В этом случае мы также говорим, что является -рекурсивным и -вычислимым.