Предельный переход под знаком интеграла Лебега — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 4 промежуточные версии 3 участников) | |||
Строка 1: | Строка 1: | ||
[[Некоторые элементарные свойства интеграла Лебега|<<]] [[Неотрицательные суммируемые функции|>>]] | [[Некоторые элементарные свойства интеграла Лебега|<<]] [[Неотрицательные суммируемые функции|>>]] | ||
− | |||
− | |||
Ранее для интеграла Римана был получен результат: если <tex>f_n \rightrightarrows f </tex> на <tex>[a;b]</tex>, <tex>f_n \in \mathcal{R}(a, b)</tex>, то | Ранее для интеграла Римана был получен результат: если <tex>f_n \rightrightarrows f </tex> на <tex>[a;b]</tex>, <tex>f_n \in \mathcal{R}(a, b)</tex>, то | ||
Строка 19: | Строка 17: | ||
{{Теорема | {{Теорема | ||
|author=Лебег | |author=Лебег | ||
− | |statement=Пусть <tex>\mu E < +\infty</tex>, <tex>f_n</tex>, <tex>f</tex> {{---}} измеримы на <tex>E</tex>, <tex>|f_n(x)| \le M\ \forall n</tex> на <tex>E</tex>. Если <tex>f_n \Rightarrow f</tex> на <tex>E</tex>, тогда <tex>\int \limits _{E} f_n \to \int \limits_{E} f</tex>. | + | |statement=Пусть <tex>\mu E < +\infty</tex>, <tex>f_n</tex>, <tex>f</tex> {{---}} измеримы на <tex>E</tex>, <tex> |f_n(x)| \le M\ \forall n</tex> на <tex>E</tex>. Если <tex>f_n \Rightarrow f</tex> на <tex>E</tex> и <tex> f </tex> ограничена, тогда <tex>\int \limits _{E} f_n \to \int \limits_{E} f</tex>. |
|proof= | |proof= | ||
<tex>f_n \Rightarrow f</tex> на <tex>E</tex>, тогда по теореме Риcса <tex>f_{n_k} \to f</tex> почти всюду на <tex>E</tex>. | <tex>f_n \Rightarrow f</tex> на <tex>E</tex>, тогда по теореме Риcса <tex>f_{n_k} \to f</tex> почти всюду на <tex>E</tex>. |
Текущая версия на 19:38, 4 сентября 2022
Ранее для интеграла Римана был получен результат: если
Равенство, подобное
, называется предельным переходом под знаком интеграла.Рассмотрим пример:
;
, почти всюду на , но .
Следовательно,
.Теорема (Лебег): |
Пусть , , — измеримы на , на . Если на и ограничена, тогда . |
Доказательство: |
на , тогда по теореме Риcса почти всюду на .
Как обычно, , ,, , следовательно, . , тогда . В силу сходимости по мере, Так как , следовательно, начиная с некоторого , . , то теорема доказана. |
Если сравнить это доказательство с доказательством аналогичной теоремы для интеграла Римана, то видим разницу: по сравнению с последней, теорема Лебега технически элементарна. Это объясняется тем, что интеграл Лебега можно брать по любому измеримому множеству, а интеграл Римана привязан к отрезку.