|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| ==Задача <tex>3SAT</tex>== | | ==Задача <tex>3SAT</tex>== |
| <tex>3SAT=3CNFSAT=\{\phi|\phi</tex> в 3-КНФ, <tex>\phi \in SAT\}</tex> | | <tex>3SAT=3CNFSAT=\{\phi|\phi</tex> в 3-КНФ, <tex>\phi \in SAT\}</tex> |
Текущая версия на 19:38, 4 сентября 2022
Задача [math]3SAT[/math]
[math]3SAT=3CNFSAT=\{\phi|\phi[/math] в 3-КНФ, [math]\phi \in SAT\}[/math]
Теорема
[math]3SAT \in NPC [/math]
Доказательство
Для того, чтобы доказать NP-полноту задачи, необходимо установить следующие факты:
- [math] 3SAT \in NP [/math].
- [math] 3SAT \in NPH [/math];
Доказательство принадлежности 3SAT классу NP
Возьмем в качестве сертификата набор [math]x_1 \ldots x_{n}[/math], где [math]x_i \in \{0,1\}[/math].
Верификатор подставляет [math]x_1 \ldots x_n[/math] в формулу и проверяет её на равенство единице.
Время работы верификатора и длина сертификата, очевидно, полиномиальны. Итак, [math]3SAT \in NP[/math].
Доказательство принадлежности 3SAT классу NPH
Покажем, что [math]CNFSAT \le 3SAT[/math], то есть [math]CNFSAT[/math] сводится по Куку к [math]3SAT[/math].
Рассмотрим один дизъюнкт булевой формулы в форме 3-КНФ. Он должен иметь вид [math](x \vee y \vee z)[/math].
Научимся приводить члены вида [math](x)[/math], [math](x \vee y)[/math], [math](x_1 \vee x_{2} \vee \ldots \vee x_{m})[/math] к нужному виду.
- [math](x \vee y)[/math] заменим на [math](x \vee y \vee z) \wedge (x \vee y \vee \neg z)[/math]. Ясно, что последняя формула выполнима тогда и только тогда, когда выполнима исходная, при любых [math]z[/math];
- [math](x)[/math] заменим на [math](x \vee y) \wedge (x \vee \neg y)[/math] - свели задачу к предыдущей;
- Если встречается дизъюнкт вида [math](x_1 \ldots x_k), k \ge 3[/math], введем [math]k-3[/math] новых переменных и заменим наш дизъюнкт на [math]k-2[/math] дизъюнкта: [math](x_1 \vee x_2 \vee z_1) \wedge (x_3 \vee \neg z_1 \vee z_2) \wedge (x_4 \vee \neg z_2 \vee z_3) \wedge \ldots \wedge (x_{k-1} \vee x_k \vee \neg z_{k-3})[/math]. Покажем, что эта замена корректна.
Для этого, сделаем утверждение:
Если [math](x_{1}^* \ldots x_{k}^*)[/math] - набор значений [math]x_i[/math], удовлетворяющий дизъюнкт [math](x_1 \vee \ldots \vee x_k)[/math], то существует такой набор значений [math]z_{1}^* \ldots z_{k-3}^*[/math], что каждый из [math]k-2[/math] новых дизъюнктов также удовлетворен.
Действительно, среди значений [math](x_{1}^* \ldots x_{k}^*)[/math] хотя бы одно должно равняться [math]true[/math]. Не умаляя общности, пусть для некоторого [math]r: 1 \le r \le k, x_r = true[/math]. Тогда, пусть [math]z_{s}^*=true[/math] для [math]s \le r-2[/math] и [math]z_{s}^*=false[/math] для [math]s \gt r - 2[/math]. Тогда, все новые дизъюнкты также будут удовлетворены.
Наоборот, пусть все новые дизъюнкты удовлетворяются некоторым набором значений [math]x_i[/math] и [math]z_i[/math]. Покажем, что тогда хотя бы один из [math]x_i[/math] должен равняться [math]true[/math].
Предположим, что это не так, и [math]x_i = false, i = 1..k[/math]. Тогда, первые [math]k-3[/math] дизъюнкта в [math]3SAT[/math] удовлетворены только если [math]z_i = true, i=1..k-3[/math]. Однако, если [math]z_{k-3}=true[/math], то последний дизъюнкт [math](x_{k-1} \vee x_k \vee \neg z_{k-3})[/math] не может быть удовлетворен. Пришли к противоречию, следовательно хотя бы один из [math]x_i[/math] должен равняться [math]true[/math].
Таким образом, мы свели [math]CNFSAT[/math] к [math]3SAT[/math], следовательно [math]3SAT \in NPH[/math]. Теорема доказана.