Дерево Уоллеса — различия между версиями
Komarov (обсуждение | вклад) (Добавлен рисунок) |
м (rollbackEdits.php mass rollback) |
||
(не показана 41 промежуточная версия 7 участников) | |||
Строка 1: | Строка 1: | ||
− | + | '''Дерево Уоллеса''' (англ. ''Wallace tree'') {{---}} [[Реализация булевой функции схемой из функциональных элементов|схема]] для умножения двух чисел. Время работы <tex>O(\log n)</tex>. | |
− | + | ==Принцип работы== | |
+ | ===Дерево Уоллеса=== | ||
+ | [[file:wallace_tree.png|thumb|200px|Иллюстрация работы дерева для суммирования 9 чисел]] | ||
− | + | Для получения произведения, воспользуемся методом, напоминающим умножение «в столбик»: распишем произведение в сумму <tex>n</tex> | |
+ | чисел (как в [[Матричный умножитель|матричном умножителе]]). | ||
− | + | Однако, в отличие от [[Матричный умножитель|матричного умножителя]], дерево Уоллеса складывает все числа не последовательно, а с помощью специального элемента(назовём его <tex>3\to2</tex>), преобразующего <tex>3</tex> числа <tex>x</tex>, <tex>y</tex> и <tex> z </tex> в числа <tex>a</tex> и <tex>b</tex> такие, что <tex>x + y + z = a + b</tex>. | |
С помощью этого элемента на каждом шаге производятся следующие операции: | С помощью этого элемента на каждом шаге производятся следующие операции: | ||
− | # Берутся тройки чисел < | + | # Берутся тройки чисел <tex>(x_1, x_2, x_3)</tex>, <tex>(x_4, x_5, x_6)</tex>, <tex>\ldots</tex> |
− | # Для каждой тройки применяется элемент < | + | # Для каждой тройки применяется элемент <tex>3\to2</tex>. |
− | # | + | # Повторяются пункты 1 и 2 пока не осталось <tex>2</tex> числа. |
− | # Оставшиеся 2 числа складываются с помощью [[Двоичный каскадный сумматор|двоичного каскадного сумматора]]. | + | # Оставшиеся <tex>2</tex> числа складываются с помощью [[Двоичный каскадный сумматор|двоичного каскадного сумматора]]. |
На выходе имеем число, которое равно сумме чисел на всех входах. | На выходе имеем число, которое равно сумме чисел на всех входах. | ||
+ | ===Элемент 3→2=== | ||
+ | [[file:3v2.png|thumb|300px|Элемент 3→2]] | ||
+ | Для того, чтобы представить сумму трёх чисел с помощью двух чисел, воспользуемся полным сумматором. Для каждого <tex>i</tex> направим <tex>x_i</tex>, <tex>y_i</tex> и <tex>z_i</tex> на вход полного сумматора. Тогда младший бит сумматора будет <tex>i</tex>-ым битом первого числа, а старший {{---}} <tex>(i + 1)</tex>-ым второго. | ||
− | + | Очевидно, полученные числа в сумме дают <tex>x + y + z</tex>. | |
− | |||
− | |||
− | + | На иллюстрации изображён элемент <tex>3\to2</tex> для четырёхбитных чисел, в верхнем прямоугольнике изображены четыре полных сумматора, выходы которых и являются разрядами результатов. | |
− | |||
− | + | Поскольку все полные сумматоры работают параллельно (выходы на каждом из них зависят только от собственных входов), то глубина такой схемы есть константа (не зависит от количества бит). | |
− | |||
− | |||
− | + | ==Схемная сложность== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Определим количество элементов и глубину схемы для умножения двух чисел из <tex>n</tex> бит. | |
− | + | Каждый элемент <tex>3\to2</tex> имеет глубину <tex>O(1)</tex> и размер <tex>O(n)</tex>. | |
− | + | Подсчитаем количество элементов <tex>3\to2</tex>. На каждом шаге количество чисел, которые нужно просуммировать, уменьшается в полтора раза. Тогда глубина дерева будет равна <tex>\log_{\frac{3}{2}}n</tex>, и в нём будет <tex> n + \dfrac{2}{3} n + \left(\dfrac{2}{3}\right)^2n + \ldots = O(n)</tex> элементов <tex>3\to2</tex>. Обозначим за <tex>size</tex> общее количество элементов в цепи; за <tex>size_{3\to2}</tex> количество элементов <tex>3\to2</tex>; за <tex>size_{sum}</tex> количество элементов двоичного каскадного сумматора в схеме; за <tex>depth</tex> глубину схемы; за <tex>depth_{3\to2}</tex> глубину каждого из элементов <tex>3\to2</tex>; за <tex>depth_{sum}</tex> глубину каждого из элементов двоичного каскадного сумматора. | |
+ | Тогда общая сложность равна | ||
− | + | <tex>depth = depth_{3\to2} \cdot \log_{3/2}n + depth_{sum} = O(\log n)</tex> | |
− | + | <tex>size = size_{3\to2} \cdot O(n) + size_{sum} = O(n^2) </tex> | |
− | + | ||
+ | == См. также == | ||
+ | * [[Матричный умножитель]] | ||
+ | * [[Сумматор]] | ||
+ | * [[Каскадный сумматор]] | ||
+ | * [[Двоичный каскадный сумматор]] | ||
+ | |||
+ | == Источники информации== | ||
+ | |||
+ | * Кормен, Т., Лейзерсон, Ч., Ривест, Р. Алгоритмы: построение и анализ — 960 с. — ISBN 5-900916-37-5 | ||
− | + | [[Категория: Дискретная математика и алгоритмы]] | |
− | + | [[Категория: Схемы из функциональных элементов ]] |
Текущая версия на 19:39, 4 сентября 2022
Дерево Уоллеса (англ. Wallace tree) — схема для умножения двух чисел. Время работы .
Содержание
Принцип работы
Дерево Уоллеса
Для получения произведения, воспользуемся методом, напоминающим умножение «в столбик»: распишем произведение в сумму матричном умножителе).
чисел (как вОднако, в отличие от матричного умножителя, дерево Уоллеса складывает все числа не последовательно, а с помощью специального элемента(назовём его ), преобразующего числа , и в числа и такие, что .
С помощью этого элемента на каждом шаге производятся следующие операции:
- Берутся тройки чисел , ,
- Для каждой тройки применяется элемент .
- Повторяются пункты 1 и 2 пока не осталось числа.
- Оставшиеся двоичного каскадного сумматора. числа складываются с помощью
На выходе имеем число, которое равно сумме чисел на всех входах.
Элемент 3→2
Для того, чтобы представить сумму трёх чисел с помощью двух чисел, воспользуемся полным сумматором. Для каждого
направим , и на вход полного сумматора. Тогда младший бит сумматора будет -ым битом первого числа, а старший — -ым второго.Очевидно, полученные числа в сумме дают
.На иллюстрации изображён элемент
для четырёхбитных чисел, в верхнем прямоугольнике изображены четыре полных сумматора, выходы которых и являются разрядами результатов.Поскольку все полные сумматоры работают параллельно (выходы на каждом из них зависят только от собственных входов), то глубина такой схемы есть константа (не зависит от количества бит).
Схемная сложность
Определим количество элементов и глубину схемы для умножения двух чисел из
бит.Каждый элемент
имеет глубину и размер .Подсчитаем количество элементов
. На каждом шаге количество чисел, которые нужно просуммировать, уменьшается в полтора раза. Тогда глубина дерева будет равна , и в нём будет элементов . Обозначим за общее количество элементов в цепи; за количество элементов ; за количество элементов двоичного каскадного сумматора в схеме; за глубину схемы; за глубину каждого из элементов ; за глубину каждого из элементов двоичного каскадного сумматора. Тогда общая сложность равна
См. также
Источники информации
- Кормен, Т., Лейзерсон, Ч., Ривест, Р. Алгоритмы: построение и анализ — 960 с. — ISBN 5-900916-37-5