Критерий Тарьяна минимальности остовного дерева — различия между версиями
| Sketcher (обсуждение | вклад)  (→См.также) | м (rollbackEdits.php mass rollback) | ||
| (не показаны 23 промежуточные версии 4 участников) | |||
| Строка 6: | Строка 6: | ||
| Остовное дерево минимально тогда и только тогда, когда для любого ребра, не принадлежащего остову, цикл, образуемый этим ребром при добавлении к остову, не содержит рёбер тяжелее этого ребра. | Остовное дерево минимально тогда и только тогда, когда для любого ребра, не принадлежащего остову, цикл, образуемый этим ребром при добавлении к остову, не содержит рёбер тяжелее этого ребра. | ||
| |proof= | |proof= | ||
| + | <tex> \Rightarrow </tex>  | ||
| − | + | Докажем, что остовное дерево, состоящее из ребер наименьшего веса на циклах {{---}}  минимально. | |
| + | |||
| + | Предположим противное: пусть остовное дерево <tex> A </tex> состоит из всех минимальных ребер на циклах, тогда оно не минимально.  | ||
| + | |||
| + | Если <tex> A </tex> не минимально, то его можно улучшить, значит есть ребро, которое имеет наименьший вес на цикле и не принадлежит дереву. Следовательно, дерево построено не на минимальных ребрах в циклах {{---}} противоречие. | ||
| + | |||
| + | <tex> \Leftarrow </tex> | ||
| + | |||
| + | Построим минимальное остовное дерево <tex> A </tex>, с помощью общего алгоритма построения MST. Докажем, что оно имеет минимальные ребра на каждом цикле. | ||
|   '''function''' Generic MST(<tex> G </tex>):   |   '''function''' Generic MST(<tex> G </tex>):   | ||
|      <tex> A = \{ \} </tex> |      <tex> A = \{ \} </tex> | ||
|      '''while''' <tex> A </tex> не является остовом |      '''while''' <tex> A </tex> не является остовом | ||
| − |         '''do''' найти безопасное ребро <tex> ( u, v ) \in E </tex> для <tex> A </tex> | + |         '''do''' найти безопасное ребро <tex> ( u, v ) \in E </tex> для <tex> A </tex> <font color = darkgreen>// нужное ребро находится с помощью [[Лемма о безопасном ребре|леммы о безопасном ребре]] </font color = darkgreen> | 
|            <tex> A = A \cup \{( u, v )\} </tex>   |            <tex> A = A \cup \{( u, v )\} </tex>   | ||
|   '''return''' <tex> A </tex> |   '''return''' <tex> A </tex> | ||
| − | + | Заметим, что дерево <tex> A </tex> состоит полностью из безопасных ребер, так как на каждом шаге добавлялось безопасное ребро. | |
| − | + | Теперь, рассмотрим какой-нибудь разрез <tex> (S, T) </tex> уже построенного дерева <tex> A </tex> и пересекающее ребро <tex> (u, v) </tex>, причем <tex> u \in S </tex>, а <tex> v \in T </tex>. Найдем путь в изначальном графе <tex> G </tex>, соединяющий вершины <tex> u </tex> и <tex> v </tex>. Так как они находятся в разных компонентах связности, то какое-нибудь ребро <tex> (a, b) \notin A</tex> тоже будет пересекать разрез <tex> (S, T) </tex>. Очевидно, что <tex> w(u, v) \leqslant  w(a, b) </tex>, так как первое {{---}} безопасное ребро.  | |
| − | |||
| + | Следовательно, любое ребро не принадлежащее <tex> A</tex> не легче ребер принадлежащих <tex> A </tex> на этом цикле. | ||
Текущая версия на 19:39, 4 сентября 2022
Содержание
Критерий Тарьяна
| Теорема (критерий Тарьяна минимальности остовного дерева): | 
| Остовное дерево минимально тогда и только тогда, когда для любого ребра, не принадлежащего остову, цикл, образуемый этим ребром при добавлении к остову, не содержит рёбер тяжелее этого ребра. | 
| Доказательство: | 
| 
 Докажем, что остовное дерево, состоящее из ребер наименьшего веса на циклах — минимально. Предположим противное: пусть остовное дерево состоит из всех минимальных ребер на циклах, тогда оно не минимально. Если не минимально, то его можно улучшить, значит есть ребро, которое имеет наименьший вес на цикле и не принадлежит дереву. Следовательно, дерево построено не на минимальных ребрах в циклах — противоречие. 
 Построим минимальное остовное дерево , с помощью общего алгоритма построения MST. Докажем, что оно имеет минимальные ребра на каждом цикле. function Generic MST(): while не является остовом do найти безопасное ребро для // нужное ребро находится с помощью леммы о безопасном ребре return Заметим, что дерево состоит полностью из безопасных ребер, так как на каждом шаге добавлялось безопасное ребро. Теперь, рассмотрим какой-нибудь разрез уже построенного дерева и пересекающее ребро , причем , а . Найдем путь в изначальном графе , соединяющий вершины и . Так как они находятся в разных компонентах связности, то какое-нибудь ребро тоже будет пересекать разрез . Очевидно, что , так как первое — безопасное ребро.Следовательно, любое ребро не принадлежащее не легче ребер принадлежащих на этом цикле. | 
Уникальность остовного дерева
| Задача: | 
| Поиск минимального остовного дерева и проверка его на уникальность. | 
Алгоритм решения
Построим минимальное остовное дерево используя алгоритм Краскала. Рассмотрим рёбра вне остова в любом порядке. Очередное обозначим . Рассмотрим максимальное ребро на пути и внутри остова:
- Если его вес совпадает с весом ребра, то при добавлении ребра в остов, мы получим остов с циклом на котором несколько рёбер имеют одинаковый вес, значит мы можем удалить любое из них и остовное дерево будет всё ещё минимальным, это нарушает уникальность дерева. На этом алгоритм завершается и по критерию Тарьяна мы можем сказать, что в графе можно построить несколько остовных деревьев.
- Если его вес больше ребра, то заменив ребро мы получим остов с большим весом, этот случай не влияет на уникальность.
- Его вес не может быть меньше ребра из остова, иначе мы смогли бы построить минимальное остовное дерево с меньшим весом.
После рассмотрения всех рёбер, если мы не нашли ребро вне остова, при добавлении которого создаётся цикл с максимальным ребром таким же как и на пути и , то в графе нету другого остовного дерева и наше дерево уникально. Искать максимальное ребро на пути и в дереве мы можем при помощи heavy-light декомпозиции.
Асимптотика
Построение минимального остовного дерева работает за , нахождение максимального ребра за , максимальное количество рёбер вне остова не больше , каждое ребро проверяется за . Построение heavy-light декомпозиции работает за , остов мы построим один раз, heavy-light декомпозицию тоже один раз, каждое ребро мы не больше одного раза проверим на замену, сложность алгоритма .
См.также
- Остовные деревья: определения, лемма о безопасном ребре
- Минимально узкое остовное дерево
- Алгоритм Краскала
- Алгоритм Борувки
- Алгоритм Прима
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. — Алгоритмы. Построение и анализ.
