Сходимость ряда Фурье в индивидуальной точке — различия между версиями
| Sementry (обсуждение | вклад) м (→Следствие 2) | м (rollbackEdits.php mass rollback) | ||
| (не показано 16 промежуточных версий 6 участников) | |||
| Строка 1: | Строка 1: | ||
| − | [[ | + | [[Лемма Римана-Лебега|<<]][[Функции ограниченной вариации|>>]] | 
| {{В разработке}} | {{В разработке}} | ||
| − | В этом параграфе установим ряд результатов, гарантирующих, что <tex>\lim\limits_{n\to\infty} \int\limits_0^\pi \varphi_x(t) D_n(t) dt = 0</tex>, что равносильно <tex> | + | В этом параграфе установим ряд результатов, гарантирующих, что <tex>\lim\limits_{n\to\infty} \int\limits_0^\pi \varphi_x(t) D_n(t) dt = 0</tex>, что равносильно <tex>S_n(f, x) \to S</tex>. | 
| __TOC__ | __TOC__ | ||
| Строка 12: | Строка 12: | ||
| Дини | Дини | ||
| |statement= | |statement= | ||
| − | <tex>f\in L_1</tex>, <tex> | + | <tex>f\in L_1</tex>, <tex> S \in \mathbb{R}</tex>, <tex>\int\limits_0^\pi \frac{|\varphi_x(t)|}{t} dt < +\infty</tex>, где <tex>\varphi_x(t) \stackrel{\mathrm{def}}= f(x + t) + f(x - t) - 2S</tex> . Тогда <tex> S = \lim\limits_{n\to\infty} S_n(f, x)</tex> | 
| |proof= | |proof= | ||
| − | <tex> | + | <tex>S_n(f, x) - S = \int\limits_0^\pi \varphi_x(t) \frac1{2\pi} \frac{\sin(n + 1/2)t}{\sin t/2} dt</tex> | 
| <tex>= \frac1{2\pi} \int\limits_0^\pi \varphi_x(t) \cos nt dt + \frac1{2\pi}\int\limits_0^\pi \varphi_x(t) \frac{\cos t/2}{\sin t/2} \sin nt dt</tex> | <tex>= \frac1{2\pi} \int\limits_0^\pi \varphi_x(t) \cos nt dt + \frac1{2\pi}\int\limits_0^\pi \varphi_x(t) \frac{\cos t/2}{\sin t/2} \sin nt dt</tex> | ||
| Строка 32: | Строка 32: | ||
| }} | }} | ||
| − | Выведем некоторые следствия | + | Выведем некоторые следствия: | 
| === Следствие о четырех пределах === | === Следствие о четырех пределах === | ||
| Строка 38: | Строка 38: | ||
| {{Утверждение | {{Утверждение | ||
| |about=следствие 1 (о четырёх пределах) | |about=следствие 1 (о четырёх пределах) | ||
| − | |statement=Пусть  | + | |statement= | 
| + | Пусть точка <tex>x</tex> регулярна, а также существуют <tex>\alpha=\lim\limits_{t\to +0} \frac{f(x+t) - f(x+0)}{t}</tex> и <tex>\beta=\lim\limits_{t\to+0} \frac{f(x-t)-f(x-0)}{t}</tex>. Тогда в этой точке ряд Фурье сходится, его сумма равна <tex>\frac{f(x+0)+f(x-0)}2</tex> | ||
| |proof= | |proof= | ||
| ''Примечание'': Очевидно, что все четыре предела будут, если в точке <tex>x</tex> у <tex>f</tex> есть производная.   | ''Примечание'': Очевидно, что все четыре предела будут, если в точке <tex>x</tex> у <tex>f</tex> есть производная.   | ||
| − | Доказательство сводится к проверке условий Дини для <tex>s = \frac{f(x+0) | + | Доказательство сводится к проверке условий Дини для <tex>s = \frac{f(x+0)+f(x-0)}{2}</tex> | 
| − | <tex>\frac{|\varphi_x(t)|}t \le \frac{|f(x + t) - f(x + 0)|}{t}  + \frac{|f(x - t) - f(x - 0|}{t}</tex> | + | <tex>\frac{|\varphi_x(t)|}t \le \frac{|f(x + t) - f(x + 0)|}{t}  + \frac{|f(x - t) - f(x - 0)|}{t}</tex> | 
| Первое слагаемое стремится на бесконечности к <tex>\alpha</tex>, второе {{---}} к <tex>\beta</tex>. | Первое слагаемое стремится на бесконечности к <tex>\alpha</tex>, второе {{---}} к <tex>\beta</tex>. | ||
| − | Значит, <tex>\frac{|\varphi_x(t)|}t</tex> ограничена справа от нуля и суммируема, то есть, теорема Дини применима. | + | Значит, <tex>\ \frac{|\varphi_x(t)|}t</tex> ограничена справа от нуля и суммируема, то есть, теорема Дини применима. | 
| }} | }} | ||
| Строка 55: | Строка 56: | ||
| {{Утверждение | {{Утверждение | ||
| |statement= | |statement= | ||
| − | Пусть <tex>x</tex> {{---}} регулярная точка функции и <tex> | + | Пусть <tex>x</tex> {{---}} регулярная точка функции и <tex>S_n(f, x) \to S</tex>.   | 
| − | Тогда <tex> | + | Тогда <tex>S = \frac{f(x+0)+f(x-0)}2</tex> | 
| |proof= | |proof= | ||
| <tex>x</tex>{{---}} регулярная точка <tex>\Rightarrow</tex> по следствию теоремы Фейера,   | <tex>x</tex>{{---}} регулярная точка <tex>\Rightarrow</tex> по следствию теоремы Фейера,   | ||
| Строка 64: | Строка 65: | ||
| Но суммы Фейера {{---}} способ средних арифметических для сумм ряда Фурье. | Но суммы Фейера {{---}} способ средних арифметических для сумм ряда Фурье. | ||
| − | Способ средних арифметических регулярен: то есть, если <tex> | + | Способ средних арифметических регулярен: то есть, если <tex>S_n(f, x) \to S</tex>, то и <tex>\sigma_n(f, x) \to S</tex>. | 
| − | Тогда, по единственности предела, <tex> | + | Тогда, по единственности предела, <tex>S=\frac{f(x+0)+f(x-0)}{2}</tex> | 
| }} | }} | ||
| Строка 75: | Строка 76: | ||
| <tex>f, g \in C</tex>, <tex>a_n(f)=a_n(g)</tex>, <tex>b_n(f) = b_n(g)</tex>, тогда <tex>f=g</tex> | <tex>f, g \in C</tex>, <tex>a_n(f)=a_n(g)</tex>, <tex>b_n(f) = b_n(g)</tex>, тогда <tex>f=g</tex> | ||
| |proof= | |proof= | ||
| − | Действительно, из  | + | Действительно, из совпадения коэффициентов Фурье вытекает совпадение сумм Фейера, но в силу принадлежности <tex>C</tex>, <tex>\sigma_n(f, x) \to f(x)</tex>, <tex>\sigma_n(g, x) \to g(x)</tex> для любого <tex> x </tex>. Тогда, сопоставляя с равенством сумм, по единственности предела получаем: <tex> f = g </tex>. | 
| }} | }} | ||
| − | [[ | + | [[Лемма Римана-Лебега|<<]][[Функции ограниченной вариации|>>]] | 
| [[Категория:Математический анализ 2 курс]] | [[Категория:Математический анализ 2 курс]] | ||
Текущая версия на 19:39, 4 сентября 2022
Эта статья находится в разработке!
В этом параграфе установим ряд результатов, гарантирующих, что , что равносильно .
Теорема Дини
| Теорема (Дини): | 
| , , , где  . Тогда  | 
| Доказательство: | 
| 
 По лемме Римана-Лебега, так как — суммируемая, первое слагаемое при стремится к 0. Так как, по условию, , Тогда по выбору и по условиям теоремы.по лемме Римана-Лебега, так как — суммируемая, а — ограниченная и суммируемая. | 
Выведем некоторые следствия:
Следствие о четырех пределах
| Утверждение (следствие 1 (о четырёх пределах)): | 
| Пусть точка  регулярна, а также существуют  и . Тогда в этой точке ряд Фурье сходится, его сумма равна  | 
| Примечание: Очевидно, что все четыре предела будут, если в точке у есть производная. Доказательство сводится к проверке условий Дини для 
 Первое слагаемое стремится на бесконечности к , второе — к .Значит, ограничена справа от нуля и суммируема, то есть, теорема Дини применима. | 
Следствие 2
| Утверждение: | 
| Пусть  — регулярная точка функции и . 
Тогда  | 
| — регулярная точка по следствию теоремы Фейера, 
 Но суммы Фейера — способ средних арифметических для сумм ряда Фурье. Способ средних арифметических регулярен: то есть, если , то и .Тогда, по единственности предела, | 
Следствие 3
| Утверждение: | 
| , , , тогда  | 
| Действительно, из совпадения коэффициентов Фурье вытекает совпадение сумм Фейера, но в силу принадлежности , , для любого . Тогда, сопоставляя с равенством сумм, по единственности предела получаем: . | 
