|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| ==Теорема== | | ==Теорема== |
| {{Теорема | | {{Теорема |
Текущая версия на 19:41, 4 сентября 2022
Теорема
Теорема: |
Если из вершины [math]x[/math] не существует дополняющей цепи относительно паросочетания [math]M[/math] и паросочетание [math]M'[/math] получается из [math]M[/math] изменением вдоль дополняющей цепи, тогда из [math]x[/math] не существует дополняющей цепи в [math]M'[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Рисунок 2. Пунктиром обозначен путь между двумя вершинами. Ребро красного цвета лежит в паросочетании, а черного - нет.
- Доказательство от противного.
- Допустим в паросочетание внесли изменения вдоль дополняющей цепи [math](y \rightsquigarrow z)[/math] и из вершины [math]x[/math] появилась дополняющая цепь.
- Заметим, что эта дополняющая цепь должна вершинно пересекаться с той цепью, вдоль которой вносились изменения, иначе такая же дополняющая цепь из [math]x[/math] существовала и в исходном паросочетании.
- Пусть [math]p[/math] – ближайшая к [math]x[/math] вершина, которая принадлежит и новой дополняющей цепи и цепи [math](y \rightsquigarrow z)[/math].
- Тогда [math]MP[/math] – последнее ребро на отрезке [math](y \rightsquigarrow p)[/math] цепи [math](y \rightsquigarrow z)[/math], [math]NP[/math] – последнее ребро на отрезке [math](z \rightsquigarrow p)[/math] цепи [math](y \rightsquigarrow z)[/math], [math]QP[/math] - последнее ребро лежащее на отрезке [math](x \rightsquigarrow p)[/math] новой дополняющей цепи(см. Рисунок 1).
- Допустим [math]MP[/math] принадлежит паросочетанию [math]M'[/math], тогда [math]NP[/math] ему не принадлежит.
- (Случай, когда [math]NP[/math] принадлежит паросочетанию [math]M'[/math] полностью симметричен.)
- Поскольку паросочетание [math]M'[/math] получается из [math]M[/math] изменением вдоль дополняющей цепи [math](y \rightsquigarrow z)[/math], в паросочетание [math]M[/math] входило ребро [math]NP[/math], а ребро [math]MP[/math] нет.
- Кроме того, ребро [math]QP[/math] не лежит ни в исходном паросочетании [math]M[/math], ни в паросочетании [math]M'[/math], в противном случае оказалось бы, что вершина [math]p[/math] инцидентна нескольким рёбрам из паросочетания, что противоречит определению паросочетания.
- Тогда заметим, что цепь [math](x \rightsquigarrow z)[/math], полученная объединением цепей [math](x \rightsquigarrow p)[/math] и [math](p \rightsquigarrow z)[/math], по определению будет дополняющей в паросочетании [math]M[/math], что приводит к противоречию, поскольку в паросочетании [math]M[/math] из вершины [math]x[/math] не существует дополняющей цепи.
|
[math]\triangleleft[/math] |
Алгоритм
Задан граф [math]G\langle V, E \rangle[/math], про который известно, что он двудольный, но разбиение не задано явно. Требуется найти наибольшее паросочетание в нём
Алгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное.
В массиве [math]\mathtt{matching}[/math] хранятся паросочетания [math] (v, \mathtt{matching}[v]) [/math] (Если паросочетания с вершиной [math] v [/math] не существует, то [math] \mathtt{matching}[v]= -1[/math]). А [math]used[/math] — обычный массив "посещённостей" вершин в обходе в глубину (он нужен, чтобы обход в глубину не заходил в одну вершину дважды).
Функция [math] \mathrm{dfs} [/math] возвращает [math]true[/math], если ей удалось найти увеличивающую цепь из вершины [math]v[/math], при этом считается, что эта функция уже произвела чередование паросочетания вдоль найденной цепи.
Внутри функции просматриваются все рёбра, исходящие из вершины [math]v[/math], и затем проверяется: если это ребро ведёт в ненасыщенную вершину [math] to[/math], либо если эта вершина [math]to[/math] насыщена, но удаётся найти увеличивающую цепь рекурсивным запуском из [math]\mathtt{matching}[to][/math], то мы говорим, что мы нашли увеличивающую цепь, и перед возвратом из функции с результатом [math]true[/math] производим чередование в текущем ребре: перенаправляем ребро, смежное с [math]to[/math], в вершину [math] v[/math].
В основной программе сначала указывается, что текущее паросочетание — пустое (массив [math] \mathtt{matching}[/math] заполняется числами [math]-1[/math]). Затем перебирается вершина [math]v [/math], и из неё запускается обход в глубину [math] \mathrm{dfs} [/math], предварительно обнулив массив [math] used[/math].
Стоит заметить, что размер паросочетания легко получить как число вызовов [math] \mathrm{dfs} [/math] в основной программе, вернувших результат [math] true [/math]. Само искомое максимальное паросочетание содержится в массиве [math] \mathtt{matching}[/math].
После того, как все вершины [math]v \in V[/math] будут просмотрены, текущее паросочетание будет максимальным.
Корректность алгоритма следует из теоремы о максимальном паросочетании и дополняющих цепях и теоремы, описанной выше.
Реализация
- Граф [math]G\langle V, E \rangle[/math] хранится в матрице смежности [math]g[i][j][/math] размера [math]n [/math] на [math]n[/math]
- [math]n = |V|[/math]
bool dfs(v: int):
if (used[v])
return false
used[v] = true
for to in g[v]
if (matching[to] == -1 or dfs(matching[to])):
matching[to] = v
return true
return false
function main():
fill(matching, -1)
for i = 1..n
fill(used, false)
dfs(i)
for i = 1..n
if (matching[i] != -1)
print(i, " ", matching[i])
Время работы
- Итак, алгоритм Куна можно представить как серию из [math]n[/math] запусков обхода в глубину на всём графе.
- Следовательно, всего этот алгоритм исполняется за время [math]O(nm)[/math], где [math]m[/math] — количество рёбер, что в худшем случае есть [math]O(n^3)[/math]
- Если явно задано разбиение графа на две доли размером [math]n_1[/math] и [math]n_2[/math], то можно запускать [math]\mathtt{dfs}[/math] только из вершин первой доли, поэтому весь алгоритм исполняется за время [math]O(n_1m)[/math]. В худшем случае это составляет [math]O(n_1^2n_2).[/math]
Ссылки
Источники информации