Алгоритм двух китайцев — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Реализация)
м (rollbackEdits.php mass rollback)
 
(не показаны 22 промежуточные версии 9 участников)
Строка 10: Строка 10:
 
=== Описание ===
 
=== Описание ===
  
Если хотя бы одна вершина графа <tex>G</tex> недостижима из <tex>v</tex>, то требуемое дерево построить нельзя.<br>
+
Если хотя бы одна вершина графа <tex>G</tex> недостижима из <tex>v</tex>, то требуемое дерево построить нельзя.
<br>
+
 
 
{|
 
{|
 
|-
 
|-
Строка 23: Строка 23:
 
|
 
|
 
|}
 
|}
<br>
+
 
<br>
 
 
=== Пример ===
 
=== Пример ===
  
{|width="70%" align="center"
+
{| class = "wikitable" width="70%"
 +
|-
 +
! Описание !! Изображение
 
|-
 
|-
 
|Исходный граф.
 
|Исходный граф.
Строка 49: Строка 50:
 
|[[Файл:китайГраф6.png|200px]]
 
|[[Файл:китайГраф6.png|200px]]
 
|-
 
|-
|Находим корень в каждой из компонент, из него запускаем <tex>dfs</tex> по нулевым ребрам, возвращаем результат.
+
|Находим корень в каждой из компонент, из каждого такого корня запускаем <tex>dfs</tex> по нулевым ребрам, возвращаем результат.
 
|[[Файл:китайГраф7.png|200px]]
 
|[[Файл:китайГраф7.png|200px]]
 
|-
 
|-
|Находим корень в каждой из компонент, из него запускаем <tex>dfs</tex> по нулевым ребрам. Полученое дерево и есть <tex>MST</tex>.
+
|Находим корень в каждой из компонент, из каждого такого корня запускаем <tex>dfs</tex> по нулевым ребрам. Полученое дерево и есть <tex>MST</tex> в исходном графе.
 
|[[Файл:китайГраф8.png|200px]]
 
|[[Файл:китайГраф8.png|200px]]
 
|}
 
|}
  
 
=== Корректность ===
 
=== Корректность ===
<br><br>
 
  
 
''' Замечания: '''
 
''' Замечания: '''
* После перевзвешивания в каждую вершину, кроме <tex>v</tex>, входит по крайней мере одно ребро нулевого веса.<br>
+
* После перевзвешивания в каждую вершину кроме <tex>v</tex> входит по крайней мере одно ребро нулевого веса.<br>
 
* Пусть <tex>T</tex> — искомое дерево в <tex>G</tex> с весовой функцией <tex>w</tex>. <tex>w'(T) = w(T) - \sum \limits_{u \in V \setminus v}m(u)</tex>, т.е. <tex>T</tex> - MST в <tex>G</tex> с весовой функцией <tex>w</tex> тогда и только тогда, когда <tex>T</tex> — MST в <tex>G</tex> с весовой функцией <tex>w'</tex>.<br>
 
* Пусть <tex>T</tex> — искомое дерево в <tex>G</tex> с весовой функцией <tex>w</tex>. <tex>w'(T) = w(T) - \sum \limits_{u \in V \setminus v}m(u)</tex>, т.е. <tex>T</tex> - MST в <tex>G</tex> с весовой функцией <tex>w</tex> тогда и только тогда, когда <tex>T</tex> — MST в <tex>G</tex> с весовой функцией <tex>w'</tex>.<br>
  
Строка 74: Строка 74:
  
 
=== Реализация ===
 
=== Реализация ===
<br><br>
+
 
обозначения:
+
Обозначения:
Граф хранится в виде множества ребер + индекс корня.
+
*Граф хранится в виде множества ребер + индекс корня.
Множество ребер - список смежности.
+
*Множество ребер - список смежности.
Ребро - структура из трех чисел - {откуда ребро, куда ребро, вес ребра}.
+
*Ребро - структура {from, to, weight}.
root - текущий корень.
+
*root - текущий корень.
  особенность реализации: алгоритму не важна кратность ребер. поэтому при составлении нового графа они могут
+
   
появится - это уменьшает асимптотику с <tex>O(V^2)</tex> до <tex>O(E)</tex>  
+
Особенность реализации: алгоритму не важна кратность ребер, поэтому при составлении нового графа кратные ребра могут
 +
появиться - это уменьшает асимптотику с <tex>O(V^2)</tex> до <tex>O(E)</tex>  
 +
 +
Проверяем, можно ли дойти из <tex>v</tex> до остальных вершин. Если можно - запускаем findMST.
 
   
 
   
  проверяем, можно ли дойти из <tex>v</tex> до остальных вершин. Если можно - запускаем <tex>findMST</tex>
+
  int findMST(edges, n, root):
findMST(edges, n, root):
+
     int res = 0
     int result = 0;
+
     int minEdge[n] // создаем массив минимумов, входящих в каждую компоненту, инициализируем бесконечностью.
     int minEdge[n]; // создаем массив минимумов, входящих в каждую компоненту, инициализируем бесконечностью.
+
     for each <tex>e \in </tex> edges
     for each <tex>e \in E</tex>
 
 
         minEdge[e.to] = min(e.w, minEdge[e.to])
 
         minEdge[e.to] = min(e.w, minEdge[e.to])
     for each <tex>v \in V, v != root</tex>
+
     for each <tex>v \in V \backslash \{root\}</tex>
 
         res += minEdge[v] //веса минимальных ребер точно будут в результате
 
         res += minEdge[v] //веса минимальных ребер точно будут в результате
 
     edge zeroEdges[] //создаем массив нулевых ребер
 
     edge zeroEdges[] //создаем массив нулевых ребер
     for each <tex>e \in E</tex>
+
     for each <tex>e \in </tex> edges
         if (текущее ребро равно по весу минимальному, входящему в эту вершину)
+
         if e.w == minEdge[e.to]
 
             zeroEdges.pushback(<tex>e_1</tex>) // <tex>e_1</tex> - ребро е, уменьшенное на минимальный вес, входящий в e.to
 
             zeroEdges.pushback(<tex>e_1</tex>) // <tex>e_1</tex> - ребро е, уменьшенное на минимальный вес, входящий в e.to
     dfs(root, zeroEdges) // проверяем, можно ли дойти до всех вершин по нулевым ребрам
+
     if dfs(root, zeroEdges) // проверяем, можно ли дойти до всех вершин по нулевым ребрам
    if (можно дойти)
 
 
         return res
 
         return res
     int newComponents[n]; // будущие компоненты связности
+
     int newComponents[n] // будущие компоненты связности
 
     newComponents = Сondensation(zeroEdges)  
 
     newComponents = Сondensation(zeroEdges)  
     edge newEdges[] //создаем массив ребер в новом графе с вершинами в сконденсированными компонентами
+
     edge newEdges[] //создаем массив ребер в новом графе с вершинами в полученных компонентах
     for each <tex>e \in</tex> zeroEdges
+
     for each <tex>e \in</tex> edges
         if (концы e лежат в разных компонентах связности)
+
         if e.to и e.from в разных компонентах
             добавляем в newEdges ребро с концами в данных компонентах и весом e.w
+
             добавляем в newEdges ребро с концами в данных компонентах и весом e.w - minEdge[e.to]
     res += findMST(zeroEdges, ComponentsCount, newComponents[root])
+
     res += findMST(newEdges, ComponentsCount, newComponents[root])
 
     return res
 
     return res
  
Строка 114: Строка 115:
 
* [http://is.ifmo.ru/vis/ctree/ http://is.ifmo.ru]
 
* [http://is.ifmo.ru/vis/ctree/ http://is.ifmo.ru]
  
 +
==См. также==
 +
* [[Алгоритм Борувки]]
 +
* [http://en.wikipedia.org/wiki/Edmonds%27_algorithm Edmonds' Algorithm]
 +
* [http://rain.ifmo.ru/cat/view.php/vis/graph-spanning-trees/shortest-tree-chinese-2003 Визуализатор алгоритма]
  
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Остовные деревья ]]
 
[[Категория: Остовные деревья ]]

Текущая версия на 19:41, 4 сентября 2022

Алгоритм двух китайцев — алгоритм построения минимального остовного дерева во взвешенном ориентированном графе с корнем в заданной вершине. Был разработан математиками Чу Йонджином и Лю Цзенхонгом.

Постановка задачи

Дан взвешенный ориентированный граф [math]G(V, E)[/math] и начальная вершина [math]v[/math]. Требуется построить корневое остовное дерево в [math]G[/math] с корнем в вершине [math]v[/math], сумма весов всех ребер которого минимальна.

Алгоритм

Описание

Если хотя бы одна вершина графа [math]G[/math] недостижима из [math]v[/math], то требуемое дерево построить нельзя.

  1. Для каждой вершины [math]u \ne v[/math] графа [math]G[/math] произведём следующую операцию: найдём ребро минимального веса, входящее в [math]u[/math], и вычтем вес этого ребра из весов всех рёбер, входящих в [math]u[/math]. [math]m(u) = \min \limits_{tu \in E}w(tu), w'(tu) = w(tu) - m(u)[/math].
  2. Строим граф [math]K = (V,K_0)[/math], где [math]K_0[/math] — множество рёбер нулевого веса графа [math]G[/math] c весовой функцией [math]w'[/math]. Если в этом графе найдётся остовное дерево с корнем в [math]v[/math], то оно и будет искомым.
  3. Если такого дерева нет, то построим граф [math]C[/math] — конденсацию графа [math]K[/math]. Пусть [math]y[/math] и [math]z[/math] — две вершины графа [math]C[/math], отвечающие компонентам сильной связности [math]Y[/math] и [math]Z[/math] графа [math]K[/math] соответственно. Положим вес ребра между вершинами [math]y[/math] и [math]z[/math] равным минимальному среди весов рёбер графа [math]G[/math] с весовой функцией [math]w'[/math], идущих из [math]Y[/math] в [math]Z[/math].
  4. Продолжим с пункта 2, используя граф [math]C[/math] вместо [math]G[/math].
  5. В [math]C[/math] построено MST [math]T[/math]. Построим теперь MST [math]T'[/math] в [math]G[/math] с весовой функцией [math]w'[/math]. Добавим к [math]T'[/math] все вершины компоненты сильной связности графа [math]K[/math], которой принадлежит [math]v[/math] (по путям нулевого веса из [math]v[/math]). Пусть в [math]T[/math] есть ребро [math]yz[/math], где [math]y[/math] отвечает компоненте сильной связности [math]Y[/math], а [math]z[/math] — компоненте сильной связности [math]Z[/math] графа [math]K[/math]. Между [math]Y[/math] и [math]Z[/math] в графе [math]G[/math] с весовой функцией [math]w'[/math] есть ребро [math]y'z'[/math], вес которого равен весу ребра [math]yz[/math]. Добавим это ребро к дереву [math]T'[/math]. Добавим к [math]T'[/math] все вершины компоненты [math]Z[/math] по путям нулевого веса из [math]z'[/math]. Сделаем так для каждого ребра дерева [math]T[/math].
  6. Полученное дерево [math]T'[/math] — MST в графе [math]G[/math].

Пример

Описание Изображение
Исходный граф. КитайГраф1.png
Произведем спуск до нулевых ребер (Фаза 1, 2). КитайГраф2.png
По нулевым ребрам нельзя дойти до всех вершин из [math]v[/math], поэтому строим конденсацию и добавляем наименьшие ребра между компонентами (Фаза 3).

Найдем [math]MST[/math] для данного графа.

КитайГраф3.png
Произведем спуск до нулевых ребер (Фаза 1, 2). КитайГраф4.png
По нулевым ребрам нельзя дойти до всех вершин из [math]v[/math], поэтому строим конденсацию и добавляем наименьшие ребра между компонентами (Фаза 3).

Найдем [math]MST[/math] для данного графа.

КитайГраф5.png
Произведем спуск до нулевых ребер (Фаза 1, 2). По полученным нулевым ребрам можно дойти из корня до всех вершин. Тогда запускаем [math]dfs[/math] из корня и возвращаем ребра. КитайГраф6.png
Находим корень в каждой из компонент, из каждого такого корня запускаем [math]dfs[/math] по нулевым ребрам, возвращаем результат. КитайГраф7.png
Находим корень в каждой из компонент, из каждого такого корня запускаем [math]dfs[/math] по нулевым ребрам. Полученое дерево и есть [math]MST[/math] в исходном графе. КитайГраф8.png

Корректность

Замечания:

  • После перевзвешивания в каждую вершину кроме [math]v[/math] входит по крайней мере одно ребро нулевого веса.
  • Пусть [math]T[/math] — искомое дерево в [math]G[/math] с весовой функцией [math]w[/math]. [math]w'(T) = w(T) - \sum \limits_{u \in V \setminus v}m(u)[/math], т.е. [math]T[/math] - MST в [math]G[/math] с весовой функцией [math]w[/math] тогда и только тогда, когда [math]T[/math] — MST в [math]G[/math] с весовой функцией [math]w'[/math].
Лемма:
Кратчайшее дерево путей [math]T'[/math] в графе [math]G[/math] можно получить, найдя кратчайшее дерево путей [math]T[/math] в графе [math]C[/math], а затем заменив в нем каждую компоненту сильной связности деревом, построенным из дуг нулевой длинны.
Доказательство:
[math]\triangleright[/math]
Зафиксируем любое дерево путей и покажем, что в графе [math]G[/math] найдется дерево не большей длины, имеющее такую структуру, как сказано в лемме. Для такой структуры дерева необходимо и достаточно, чтобы в каждое из подмножеств входило только по одному ребру. Меньше быть не может, иначе получится отдельная компонента связности. Если же в какое-то подмножество входит больше чем одно ребро, то все ребра кроме одного можно заменить ребрами нулевой длины, лежащими внутри подмножества, что разве лишь уменьшит длину дерева и не нарушит связности. Повторяя это преобразование нужное число раз мы добьемся искомой структуры дерева.
[math]\triangleleft[/math]

Из сделанных замечаний и леммы следует, что дерево [math]T'[/math] — MST в [math]G[/math].

Реализация

Обозначения:

  • Граф хранится в виде множества ребер + индекс корня.
  • Множество ребер - список смежности.
  • Ребро - структура {from, to, weight}.
  • root - текущий корень.

Особенность реализации: алгоритму не важна кратность ребер, поэтому при составлении нового графа кратные ребра могут появиться - это уменьшает асимптотику с [math]O(V^2)[/math] до [math]O(E)[/math]

Проверяем, можно ли дойти из [math]v[/math] до остальных вершин. Если можно - запускаем findMST.

int findMST(edges, n, root):
   int res = 0
   int minEdge[n] // создаем массив минимумов, входящих в каждую компоненту, инициализируем бесконечностью.
   for each [math]e \in [/math] edges
       minEdge[e.to] = min(e.w, minEdge[e.to])
   for each [math]v \in V \backslash \{root\}[/math]
       res += minEdge[v] //веса минимальных ребер точно будут в результате
   edge zeroEdges[] //создаем массив нулевых ребер
   for each [math]e \in [/math] edges
       if e.w == minEdge[e.to]
           zeroEdges.pushback([math]e_1[/math]) // [math]e_1[/math] - ребро е, уменьшенное на минимальный вес, входящий в e.to
   if dfs(root, zeroEdges) // проверяем, можно ли дойти до всех вершин по нулевым ребрам
       return res
   int newComponents[n] // будущие компоненты связности
   newComponents = Сondensation(zeroEdges) 
   edge newEdges[] //создаем массив ребер в новом графе с вершинами в полученных компонентах
   for each [math]e \in[/math] edges
       if e.to и e.from в разных компонентах
           добавляем в newEdges ребро с концами в данных компонентах и весом e.w - minEdge[e.to]
   res += findMST(newEdges, ComponentsCount, newComponents[root])
   return res

Сложность

Всего будет построено не более [math]V[/math] конденсаций. Конденсацию можно построить за [math]O(E)[/math]. Значит, алгоритм можно реализовать за [math]O(VE)[/math].

Источники

  • Романовский И. В. Дискретный анализ, 3-е изд., перераб. и доп. - СПб.:Невский Диалект; БХВ-Петербург, 2003. - 320 с.: ил. - ISBN 5-7940-0114-3
  • http://is.ifmo.ru

См. также