Список заданий по теории сложности 2024 — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 27: Строка 27:
 
# Задача коммивояжера в неориентированном графе. Докажите, что язык $WUHAM = \{\langle G, w\rangle | G $ - взвешенный неориентированный граф, в котором существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
 
# Задача коммивояжера в неориентированном графе. Докажите, что язык $WUHAM = \{\langle G, w\rangle | G $ - взвешенный неориентированный граф, в котором существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
 
# Задача коммивояжера в неориентированном графе без вершин степени 2. Докажите, что язык $WUHAN = \{\langle G, w\rangle | G $ - взвешенный неориентированный граф, в котором нет вершин степени 2 и существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
 
# Задача коммивояжера в неориентированном графе без вершин степени 2. Докажите, что язык $WUHAN = \{\langle G, w\rangle | G $ - взвешенный неориентированный граф, в котором нет вершин степени 2 и существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
 +
# Говорят, что булева формула с кванторами находится в предваренной форме, если сначала идут все кванторы, а затем булева формула: $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$. Докажите, что язык истиных булевых формул с кванторами в предваренной форме является $PS$-полным.
 +
# Говорят, что булева формула с кванторами находится в КНФ, если она находится в предваренной форме $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$, причём $\varphi$ находится в КНФ. Докажите, что язык истиных булевых формул с кванторами в КНФ является $PS$-полным.
 +
# Говорят, что булева формула с кванторами находится в 3-КНФ, если она находится в предваренной форме $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$, причём $\varphi$ находится в 3-КНФ. Докажите, что язык истиных булевых формул с кванторами в 3-КНФ является $PS$-полным.
 +
# $PS$-полнота Generalized Geography. Игра в Generalized Geography (GG) ведется на поле, которое представляет собой ориентированный граф с выделенной стартовой вершиной. Исходно фишка находится в стартовой вершине. Два игрока делают ходы по очереди, за один ход игрок перемещает фишку по ребру из текущей вершины. Запрещается перемещать фишку в вершину, где она уже ранее была. Игрок, который не может сделать ход, проигрывает. Докажите, что $GG = \{\langle G, s\rangle|$ первый игрок выигрывает на графе $G$ со стартовой вершиной $s\}$ является $PS$-полным языком.
 +
# $PS$-полнота Shannon Switching Game. Игра Шеннона ведется на поле, которое представляет собой неориентированный граф с двумя выделенными вершинами $s$ и $t$. Два игрока Short и Cut делают ходы по очереди, Short ходит первым. За один ход Short может выбрать одну вершину и защитить её. За один ход Cut может удалить любую вершину, кроме $s$, $t$ и защищенных к текущему моменту вершин. В конце Short выигрывает, если по защищенным вершинам можно добраться от $s$ до $t$. Докажите, что $SHSW = \{\langle G, s, t\rangle|$ Short выигрывает на графе $G$ с выделенными вершиными $s$ и $t\}$ является $PS$-полным языком.
 +
# Класс $EXP$ определяется как множество языков $L$, для которых существует детерминированная программа, разрешающая $L$ за $O(2^{p(n)})$, где $p(n)$ - полином. Докажите, что $NP \subset EXP$.
 +
# Класс $NEXP$ определяется как множество языков $L$, для которых существует недетерминированная программа, разрешающая $L$ за $O(2^{p(n)})$, где $p(n)$ - полином. Предложите понятие $NEXP$-полноты. По аналогии с $BH_{1N}$ определите язык $BH_{2N}$, докажите, что он является $NEXP$-полным.
 +
# Можно ли сделать альтернативное определение $NEXP$ на языке сертификатов, как мы сделали с $NP$?
 +
# Докажите, что если существует язык $L \in NEXPC \cap EXP$, то $NEXP = EXP$.
 +
# Пусть задан язык $L$, принадлежащий $NP$. Зафиксируем проверку сертификатов $R(x, y)$. Обозначим как $c(x)$ число сертификатов, которые подходят для данного $x$ (очевидно, если $x \not\in L$, то $c(x) = 0$, а если $x \in L$, то $c(x) \ge 1$). Сведение по Карпу $f$ одного языка к другому, для каждого из которых зафиксирована проверка сертификатов, называется честным (англ. parsimonious), если оно сохраняет $c$, то есть $c(f(x)) = c(x)$. Докажите, что сведение $BH_{1N}$ к $SAT$ в теореме Кука является честным, если в качестве сертификата использовать последовательность недетерминированных выборов, приводящих машину Тьюринга из входа для $BH_{1N}$ к допуску.

Версия 13:05, 10 марта 2024

  1. Докажите, что конкатенация и замыкание Клини языков $NP$ является языком из $NP$
  2. Когда мы задаем числа, мы обычно записываем их в десятичной системе счисления. Докажите, что выбор для формата ввода любой системы счисления с основанием $b \ge 2$ не влияет на принадлежность языка классу $P$.
  3. В унарной системе счисления число $n$ задаётся как $1^n$. Докажите, что язык $UNARY.SUBSET.SUM = \{\langle 1^s, [1^{a_1}, 1^{a_2}, \ldots, 1^{a_n}] \rangle |$ можно выбрать подмножество $\{a_1, a_2,\ldots, a_n\}$ с суммой $s\}$ лежит в $P$.
  4. Рассмотрим задачу факторизации: дано число $n$, требуется вывести все простые делители $n$ в неубывающем порядке. Предложите язык $FACT$, такой, что если у нас есть доступ к "черному ящику" для решения $FACT$, можно за полином построить факторизацию числа $n$.
  5. Докажите, что язык, построенный в предыдущем задании, $FACT$, если числа в нем задавать в унарной системе счисления, будет лежать в $P$.
  6. В заданиях выше приведены примеры задания численных значений в унарной системе счисления, чтобы перенести задачу из $NP$ в $P$. Можно ли применить аналогичный трюк для языков $IND$, $CLIQUE$ и $VCOVER$?
  7. В определении $NP$ мы говорим, что при любом недетерминированном выборе программа должна завершиться не более чем за $p(n)$, где $p$ - полином, а $n$ - длина входа. На самом деле это требование может быть ослаблено, можно требовать, чтобы программа завершалась не более чем за $p(n)$ только в случае допуска. Докажите, что в таком определении класс $NP$ не меняется.
  8. $PRIMES\in NP$. Язык $PRIMES$ определяется следующим образом: это множество двоичных записей простых целых чисел. Доказательство принадлежности $PRIMES$ классу $NP$ разбито на два задания. Часть 1. Известно, что если $n$ простое, то существует $g$, такое что $g^{n-1}=1\pmod n$ и для всех $1 \le k < n - 1$ выполнено $g^k \ne 1 \pmod n$. Пусть известно разложение $n-1$ на простые множители: $n-1=q_1^{a_1}q_2^{a_2}\ldots q_k^{a_k}$. Предложите полиномиальный алгоритм проверки, что заданное $g$ удовлетворяет описанному условию.
  9. Часть 2. Можно недетерминированно выбрать $g$ и недетерминированно угадать разбиение $n-1$ на простые множители. Однако это требует проверки на простоту, чтобы убедиться, что угадано разложение именно на простые множители. Завершите доказательство, что $PRIMES \in NP$, описав рекурсивную процедуру проверки и доказав, что она работает за полиномиальное время.
  10. Задача останова $HALT = \{\langle m, x \rangle | m$ - детерминированная машина Тьюринга, $m(x) = 1\}$. Докажите, что $HALT$ является $NP$-трудной. Является ли она $NP$-полной?
  11. Изоморфизм подграфа $NP$-полный. Докажите $NP$-полноту следующего языка. Множество пар $\{\langle G_1, G_2 \rangle | G_1$ содержит $G_2$ как подграф $\}$.
  12. Задача о покрытии подмножествами $NP$-полна. Докажите $NP$-полноту следующего языка. Даны $n$ множеств $S_i\subset\{1, 2, \ldots, m\}$ и число $k$. Язык наборов $SETCOVER = \{ \langle [S_1, S_2, \ldots, S_n], k\rangle$ можно выбрать не более $k$ множеств, чтобы каждый элемент от $1$ до $m$ лежал хотя бы в одном выбранном множестве $\}$.
  13. Задача реберного покрытия обратных связей $NP$-полна. Докажите $NP$-полноту следующего языка. Множество пар $\{\langle G, k \rangle | G$ - ориентированный граф, который содержит подмножество из $k$ ребер, такое, что любой цикл $G$ содержит хотя бы одно из выбранных ребер $\}$.
  14. Задача поиска доминирующего множества $NP$-полна. Докажите $NP$-полноту следующего языка. Множество пар $DOM = \{\langle G, k \rangle | G$ содержит множество из $k$ вершин, таких, что любая вершина $G$ либо выбрана, либо имеет выбранного соседа $\}$.
  15. Задача пожарных депо. Докажите $NP$-полноту следующего языка. Множество троек $\{\langle G, k, d \rangle | G$ содержит множество из $k$ вершин, таких, что любая вершина $G$ имеет выбранную вершину на расстоянии не больше $d\}$.
  16. Задача о половинной клике. Докажите $NP$-полноту следующего языка. Множество графов $HALFCLIQUE=\{G | G$ имеет клику, содержащую ровно половину вершин $G\}$.
  17. Задача о раскраске в три цвета $NP$-полна. Докажите $NP$-полноту следующего языка. Множество графов $3COL=\{ G | G$ имеет правильную раскраску в три цвета $\}$. Что можно сказать про раскраску в два цвета?
  18. Задача о рюкзаке $NP$-полна. Докажите $NP$-полноту следующего языка. Даны предметы с весом $w_i$ и стоимостью $v_i$. Язык наборов $KNAPSACK=\{ \langle s, [(v_1, w_1), (v_2, w_2), \ldots (v_n, w_n)], k\rangle | $ можно выбрать предметы с суммарным весом не более $s$ и суммарной стоимостью не менее $k \}$.
  19. Неориентированный гамильтонов цикл. Докажите, что язык $UHAM = \{G | G$ - неориентированный граф, содержащий гамильтонов цикл$\}$ является $NP$-полным.
  20. Ориентированный гамильтонов путь. Докажите, что язык $HAMP = \{G | G$ - ориентированный граф, содержащий гамильтонов путь$\}$ является $NP$-полным.
  21. Неориентированный гамильтонов путь. Докажите, что язык $UHAMP = \{G | G$ - неориентированный граф, содержащий гамильтонов путь$\}$ является $NP$-полным.
  22. Выполните явное взаимное сведение языка $HAM = \{G | G$ - ориентированный граф, содержащий гамильтонов цикл$\}$ и языков из предыдущих трех заданий, не обращаясь к общим теоремам типа теоремы Кука.
  23. Неориентированный планарный гамильтонов цикл. Докажите, что язык $PUHAM = \{G | G$ - неориентированный планарный граф, содержащий гамильтонов цикл$\}$ является $NP$-полным.
  24. Неориентированный гамильтонов цикл в кубическом графе. Докажите, что язык $CUHAM = \{G | G$ - неориентированный кубический граф, содержащий гамильтонов цикл$\}$ является $NP$-полным.
  25. Неориентированный гамильтонов цикл в почти кубическом планарном графе. Докажите, что язык $CPUHAM = \{G | G$ - неориентированный планарный граф, степени вершин которого не превышают 3, содержащий гамильтонов цикл$\}$ является $NP$-полным.
  26. Задача коммивояжера. Докажите, что язык $WHAM = \{\langle G, w\rangle | G $ - взвешенный ориентированный граф, в котором существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
  27. Задача коммивояжера в неориентированном графе. Докажите, что язык $WUHAM = \{\langle G, w\rangle | G $ - взвешенный неориентированный граф, в котором существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
  28. Задача коммивояжера в неориентированном графе без вершин степени 2. Докажите, что язык $WUHAN = \{\langle G, w\rangle | G $ - взвешенный неориентированный граф, в котором нет вершин степени 2 и существует гамильтонов путь длины не более $w \}$ является $NP$-полным.
  29. Говорят, что булева формула с кванторами находится в предваренной форме, если сначала идут все кванторы, а затем булева формула: $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$. Докажите, что язык истиных булевых формул с кванторами в предваренной форме является $PS$-полным.
  30. Говорят, что булева формула с кванторами находится в КНФ, если она находится в предваренной форме $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$, причём $\varphi$ находится в КНФ. Докажите, что язык истиных булевых формул с кванторами в КНФ является $PS$-полным.
  31. Говорят, что булева формула с кванторами находится в 3-КНФ, если она находится в предваренной форме $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$, причём $\varphi$ находится в 3-КНФ. Докажите, что язык истиных булевых формул с кванторами в 3-КНФ является $PS$-полным.
  32. $PS$-полнота Generalized Geography. Игра в Generalized Geography (GG) ведется на поле, которое представляет собой ориентированный граф с выделенной стартовой вершиной. Исходно фишка находится в стартовой вершине. Два игрока делают ходы по очереди, за один ход игрок перемещает фишку по ребру из текущей вершины. Запрещается перемещать фишку в вершину, где она уже ранее была. Игрок, который не может сделать ход, проигрывает. Докажите, что $GG = \{\langle G, s\rangle|$ первый игрок выигрывает на графе $G$ со стартовой вершиной $s\}$ является $PS$-полным языком.
  33. $PS$-полнота Shannon Switching Game. Игра Шеннона ведется на поле, которое представляет собой неориентированный граф с двумя выделенными вершинами $s$ и $t$. Два игрока Short и Cut делают ходы по очереди, Short ходит первым. За один ход Short может выбрать одну вершину и защитить её. За один ход Cut может удалить любую вершину, кроме $s$, $t$ и защищенных к текущему моменту вершин. В конце Short выигрывает, если по защищенным вершинам можно добраться от $s$ до $t$. Докажите, что $SHSW = \{\langle G, s, t\rangle|$ Short выигрывает на графе $G$ с выделенными вершиными $s$ и $t\}$ является $PS$-полным языком.
  34. Класс $EXP$ определяется как множество языков $L$, для которых существует детерминированная программа, разрешающая $L$ за $O(2^{p(n)})$, где $p(n)$ - полином. Докажите, что $NP \subset EXP$.
  35. Класс $NEXP$ определяется как множество языков $L$, для которых существует недетерминированная программа, разрешающая $L$ за $O(2^{p(n)})$, где $p(n)$ - полином. Предложите понятие $NEXP$-полноты. По аналогии с $BH_{1N}$ определите язык $BH_{2N}$, докажите, что он является $NEXP$-полным.
  36. Можно ли сделать альтернативное определение $NEXP$ на языке сертификатов, как мы сделали с $NP$?
  37. Докажите, что если существует язык $L \in NEXPC \cap EXP$, то $NEXP = EXP$.
  38. Пусть задан язык $L$, принадлежащий $NP$. Зафиксируем проверку сертификатов $R(x, y)$. Обозначим как $c(x)$ число сертификатов, которые подходят для данного $x$ (очевидно, если $x \not\in L$, то $c(x) = 0$, а если $x \in L$, то $c(x) \ge 1$). Сведение по Карпу $f$ одного языка к другому, для каждого из которых зафиксирована проверка сертификатов, называется честным (англ. parsimonious), если оно сохраняет $c$, то есть $c(f(x)) = c(x)$. Докажите, что сведение $BH_{1N}$ к $SAT$ в теореме Кука является честным, если в качестве сертификата использовать последовательность недетерминированных выборов, приводящих машину Тьюринга из входа для $BH_{1N}$ к допуску.