Изменения

Перейти к: навигация, поиск

Теорема о циклах

1066 байт добавлено, 06:27, 17 мая 2011
Нет описания правки
2) Если <tex>C_1, C_2 \in Ccl</tex> и <tex>C_1 \ne C_2</tex>, то <tex>C_1 \nsubseteq C_2</tex> и <tex>C_2 \nsubseteq C_1</tex>; <br/>
3) Если <tex>C_1, C_2 \in Ccl, C_1 \ne C_2</tex> и <tex>p \in C_1 \cap C_2</tex>, то существует <tex>C \in Ccl</tex> такой, что <tex>C \subseteq (C_1 \cup C_2) \setminus p.</tex>
|proof=
1) Из [[Определение матроида|определения матроида]] (первой аксиомы) <tex>\varnothing \in I</tex>, где <tex>I</tex> — семейство независимых множеств матроида <tex>M</tex>. Откуда <tex>\varnothing \notin Ccl</tex>. <br/>
2) От противного. Из определения цикла: если <tex>C_1 \subset C_2</tex>, то <tex>C_1 \in I</tex>. Значит <tex>C_1 \notin Ccl</tex>. Противоречие. Аналогично <tex>C_2 \nsubseteq C_1</tex>. <br/>
3) От противного. Пусть <tex>D = (C_1 \cup C_2) \setminus p</tex> независимо.<br/>
Обозначим <tex>A = C_1 \cap C_2</tex>. Покажем, что <tex>|A| < |D|</tex>. Из предыдущего пункта очевидным образом следует, что <tex>|C_1 \setminus C_2| > 0</tex> и <tex>|C_2 \setminus C_1| > 0</tex>.
<tex>|D| = |C_1 \setminus C_2| + |C_2 \setminus C_1| + |A| - 1 \ge |A| + 1 + 1 - 1 = |A| + 1 > |A|</tex>
}}
Анонимный участник

Навигация