Ранговая функция, полумодулярность — различия между версиями
(Новая страница: «{{Определение |definition= Пусть дан матроид <tex> M = \langle X, I \rangle</tex>. '''Ранг…») |
(→Полумодулярность ранговой функции) |
||
Строка 18: | Строка 18: | ||
{{Теорема | {{Теорема | ||
|id=theorem | |id=theorem | ||
− | |statement=<tex>\forall A, B \subset X,</tex> <tex>r(A \cup B) + r(A \cap B) \le r(A) + r(B)</tex> | + | |statement=Пусть дан матроид <tex> M = \langle X, I \rangle</tex>, тогда <tex>\forall A, B \subset X,</tex> <tex>r(A \cup B) + r(A \cap B) \le r(A) + r(B)</tex> |
|proof= | |proof= | ||
Рассмотрим множество <tex>D_\cap \subset A \cap B : D_\cap \in I, |D_\cap| = r(A \cap B)</tex>, такое всегда существует по определению <tex>r</tex>. Дополним множество <tex>D_\cap</tex> элементами из <tex>B \setminus D_\cap</tex> до множества <tex>D_B : |D_B| = rg (B), D_B \in I</tex> (по [[#lemma|лемме]] такое возможно). Далее дополним <tex>D_B</tex> элементами из <tex>A \cup B \setminus D_B</tex> до множества <tex>D_\cup : |D_\cup| = rg(A \cup B), D_\cup \in I</tex>. Заметим, что на последнем шаге будут добавляться только элемента из <tex>A</tex>, т.к. пусть на том этапе мы взяли <tex>x \in B</tex>, тогда <tex>\{x\} \cup D_B \subset D_\cup, D_\cup \in I </tex>, следовательно <tex>\{x\} \cup D_B \in I</tex> (по [[Определение матроида]]), а также<tex>|\{x\} \cup D_B| = |D_B| + 1 = r(B) + 1</tex>, что невозможно по определению <tex>r</tex>. Заметим также, что <tex>(D_\cup \setminus D_B) \cup D_\cap \subset A</tex>, <tex>(D_\cup \setminus D_B) \cup D_\cap \in I</tex> (по [[Определение матроида]]), значит <tex>r(A) \ge |(D_\cup \setminus D_B) \cup D_\cap| = |D_\cup| - |D_B| + |D_\cap| = r(A \cup B) - r(B) + r(A \cap B) </tex>. Что и требовалось доказать. | Рассмотрим множество <tex>D_\cap \subset A \cap B : D_\cap \in I, |D_\cap| = r(A \cap B)</tex>, такое всегда существует по определению <tex>r</tex>. Дополним множество <tex>D_\cap</tex> элементами из <tex>B \setminus D_\cap</tex> до множества <tex>D_B : |D_B| = rg (B), D_B \in I</tex> (по [[#lemma|лемме]] такое возможно). Далее дополним <tex>D_B</tex> элементами из <tex>A \cup B \setminus D_B</tex> до множества <tex>D_\cup : |D_\cup| = rg(A \cup B), D_\cup \in I</tex>. Заметим, что на последнем шаге будут добавляться только элемента из <tex>A</tex>, т.к. пусть на том этапе мы взяли <tex>x \in B</tex>, тогда <tex>\{x\} \cup D_B \subset D_\cup, D_\cup \in I </tex>, следовательно <tex>\{x\} \cup D_B \in I</tex> (по [[Определение матроида]]), а также<tex>|\{x\} \cup D_B| = |D_B| + 1 = r(B) + 1</tex>, что невозможно по определению <tex>r</tex>. Заметим также, что <tex>(D_\cup \setminus D_B) \cup D_\cap \subset A</tex>, <tex>(D_\cup \setminus D_B) \cup D_\cap \in I</tex> (по [[Определение матроида]]), значит <tex>r(A) \ge |(D_\cup \setminus D_B) \cup D_\cap| = |D_\cup| - |D_B| + |D_\cap| = r(A \cup B) - r(B) + r(A \cap B) </tex>. Что и требовалось доказать. | ||
}} | }} |
Версия 17:21, 17 мая 2011
Определение: |
Пусть дан матроид . Ранговая функция определяется как: |
Полумодулярность ранговой функции
Докажем свойство полумодулярности ранговой функции:
. Для начала небольшая лемма.Лемма: |
Дан матроид и множество . Пусть также , , тогда существует . |
Доказательство: |
Пусть Предположим, что это не так и максимальное независимое подмножество, которое мы можем получить из — подмножество такое, что (по определению ранговой функции такое всегда существует. добавляя элементы из — это , причем . Тогда имеем: , следовательно существует элемент . Заметим также что и , т.к. , . Итак пришли к противоречию, мы получили множество большее по мощности, чем такое, что , значит исходное предположение было не верно, и мы можем найти множество удовлетворяющее необходимым условиям. |
Итак теперь мы готовы доказать свойство полумодулярности ранговой функции.
Теорема: |
Пусть дан матроид , тогда |
Доказательство: |
Рассмотрим множество лемме такое возможно). Далее дополним элементами из до множества . Заметим, что на последнем шаге будут добавляться только элемента из , т.к. пусть на том этапе мы взяли , тогда , следовательно (по Определение матроида), а также , что невозможно по определению . Заметим также, что , (по Определение матроида), значит . Что и требовалось доказать. | , такое всегда существует по определению . Дополним множество элементами из до множества (по