Теорема Радо-Эдмондса (жадный алгоритм) — различия между версиями
Строка 3: | Строка 3: | ||
Радо-Эдмондса | Радо-Эдмондса | ||
|statement= | |statement= | ||
− | На носителе матроида <tex>M = \langle X, I \rangle</tex> задана весовая функция <tex>\omega: X \to \mathbb R</tex>. Пусть <tex>A \in I</tex> - множество минимального веса среди независимых подмножеств <tex>X</tex> мощности <tex>k</tex>. Возьмем <tex>x: A \cup x \in I</tex>, <tex>x \notin | + | На носителе матроида <tex>M = \langle X, I \rangle</tex> задана весовая функция <tex>\omega: X \to \mathbb R</tex>. Пусть <tex>A \in I</tex> - множество минимального веса среди независимых подмножеств <tex>X</tex> мощности <tex>k</tex>. Возьмем <tex>x: A \cup x \in I</tex>, <tex>x \notin A</tex>, <tex>\omega (x)</tex> - минимальна. |
<br> Тогда <tex>A \cup x</tex> - множество минимального веса среди независимых подмножеств <tex>X</tex> мощности <tex>k + 1</tex>. | <br> Тогда <tex>A \cup x</tex> - множество минимального веса среди независимых подмножеств <tex>X</tex> мощности <tex>k + 1</tex>. | ||
|proof= | |proof= |
Версия 10:57, 18 мая 2011
Теорема (Радо-Эдмондса): |
На носителе матроида задана весовая функция . Пусть - множество минимального веса среди независимых подмножеств мощности . Возьмем , , - минимальна.
Тогда - множество минимального веса среди независимых подмножеств мощности . |
Доказательство: |
Рассмотрим Теорема доказана. |