1679
правок
Изменения
м
йеееа
$ \sum\limits_{n = 0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n $ - ряд Тейлора функции по степеням $ (x - x_0) $.
Сопоставим ряд с формулой Тейлора функции, которую можно писать $ \forall n. f(x) = \sum\limits_{k = 0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x) \Rightarrow $ ряд получается из формулы при $ n = \infty $. Если $ r_n(x) \rightarrow 0 $ при $ n \rightarrow \infty $, то можно перейти к пределу. $ f(x) = \sum\limits_{k = 0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k $, что является разложением функции в степенной ряд в точке $ x $.
Если при всех x из некоторой окрестности точки $ x_0 $ функция разлагается в степенной ряд, то это будет обязательно ряд Тейлора.
Если разложение возможно, то единственно. Изучается Из учается с помощью поведения остатка $ r_n(x) $.
Рассуждение Коши, показывающее, что $ \exists f \in C^{\infty} $, но не разлагаемая в ряд Тейлора.
В связи с этими разложением Эйлер совершил революцию в умах.
$ e = \xrightarrowstackrel{def} {=} \lim_{n \to \infty} (1 + \frac1n)^n $
Внезапно, мы решили что $ \lim_{x \to 0} (1 + x)^{\frac1n} = e $
Эйлер поступил по другом:
Итак, $ e \le \sum\limits_{k = 0}^{\infty} \frac1{k!} \le e \Rightarrow f(1) = e $
Полагаем $e^x \stackrel{def}{=(def) } \sum\limits_{k = 0}^{\infty} \frac{x^k}{k!} $
Рассмотрим $ f = ln(1 + x) $ и разложим ее в степенной ряд другим приемом.
$ \ln 2 = \sum\limits_{k = 1}^n (-1)^{k - 1} \frac1k + \frac{\ln^{(n + 1)} (1 + \theta_n)}{(n + 1)!} $
Но $ \ln^{(n + 1)}(x) = { \left( \frac1x) \right)}^{(n)} \Rightarrow \ln^{(n + 1)}(1 + x) = (-1)^n n! (1 + x)^{(-1 - n)} $ //трееш
$ r_n(1) = \frac{(-1)^n n! (1 + \theta_n)^{-1 - n}}{(n + 1)!} $ , $ |r_n(1)| \le \frac1{n + 1} \xrightarrow[n \to \infty]{} 0 $
$ \frac{b_n}{b_{n + 1}} = \frac{a_n}{a_{n + 1}} \cdot \frac{e^{-\frac1{12n}}}{e^{-\frac1{12(n + 1)}}} = \frac{(1 + \frac1n)^{n + \frac12}}{e \cdot e^{\frac1{12n(n + 1)}}} < 1 \Rightarrow b_n $ возрастает, $ b_n \le a $
$ a_n e^{-\frac1{12n}} < a < a_n \exists \theta_n \in (0; 1): a = a_n e ^ {- \frac{\theta_n}{12n}} $.
$ n! = a n ^ {n + \frac12} e^{-n} e^{\frac{\theta_n}{12n}} $. Если $ a = \sqrt{2 \pi} $, то получили формулу Стирлинга.
Воспользуемся формулой Валлиса:
$ \frac{\pi}2 = \lim_{n \to \infty} { \left[ \frac{(2n)!!}{(2n - 1)!!} \right] }^2 \cdot \frac1{2n + 1} $
$ (2n - 1) !! = \frac{(2n)!}{(2n)!!} $ $ \frac{(2n)!!}{(2n - 1)!!} = \frac{((2n)!!)^2}{(2n)!!} $
$ (2n)!! = 2^n n! $
$ \frac{(2n)!!}{(2n - 1)!!} = \frac{2^{2n} (n!)^2}{(2n)!} $ = подставим найденное выражение
$ = \frac{2^{2n} a^2 n^{2n + 1} e^{-2n} e^{\frac{\theta_n}{6n}}}{a {(2n)}^{2n + \frac12} e^{-2n} e^{\frac{\theta_{2n}}{24n}}} = a \frac{\sqrt{n}}{\sqrt{2}} e^{\frac{\theta_n}{6n} - \frac{\theta_{2n}}{24n}} $
$ { \left[ \frac{(2n)!!}{(2n - 1)!!} \right] }^2 \cdot \frac1{2n + 1} = a^2 \frac{n}2 \underbrace{{\left( \frac{\theta_n}{6n} - \frac{\theta_{2n}}{24n} \right) }}_{\to e^0 = 1} \cdot \frac1{2n + 1} = a^2 \frac1{2(2 + \frac1n)} (1 + o(1)) \to \frac{a^2}4 $. $ a^2 = 2 \pi $; $ a = \sqrt{2 \pi} $
Поступая аналогично, можно разложить тригонометрические функции sin и cos и обратить внимание на ограниченность $ \sin^{(n)} (x) \Rightarrow r_n(x) \to 0 \forall x $.
$\sin(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n + 1}}{(2n + 1)!}$
$\cos(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n}}{(2n)!}$
Окончательно установлена аналитическая природа тригонометрических функций.
Исходя из арифметических действий:
$ \sin^2(x) + \cos^2(x) = 1 $
$ \sin(x + y) = \sin(x) \cos(y) + \sin(y) \cos(x) $
Первым примером разложения в ряд был бином Ньютона с дробным показателем. Формула Тейлора, $ r_n \to 0 $ - $|x| < 1 $.
Остаток записывают в форме Коши:
$ (1 + x)^{\alpha} = \sum\limits_{k = 1}^{\infty} \left[ \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k \right] + 1, \alpha \in \mathbb{R} $
</wikitex>