Дифференцируемые отображения в нормированных пространствах — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{В разработке}}<br> {{Определение |definition= Пусть <tex>V_{r}(x)</tex> - шар в <tex>X, \quad \mathcal{F} : V_r(x) \to Y </tex>. <te…»)
(нет различий)

Версия 21:03, 29 мая 2011

Эта статья находится в разработке!

Определение:
Пусть [math]V_{r}(x)[/math] - шар в [math]X, \quad \mathcal{F} : V_r(x) \to Y [/math]. [math]\mathcal{F}[/math] - дифференцируема в точке [math]x[/math], если существует ограниченный линейный оператор [math]\mathcal{A} : X \to Y[/math], который может зависеть от [math]x[/math], такой что : [math]\left || \Delta x \right|| \lt r, (x + \Delta x \in V_r(x))[/math]

[math]\lt \mathcal{F}(x + \Delta x) - \mathcal{F}(x) = \mathcal{A}(\Delta x) + \alpha(\Delta x) \left || \Delta x \right ||, \alpha(\Delta x) \rightarrow 0[/math] при [math]\Delta x \rightarrow 0[/math]

Тогда [math]\mathcal{A}(x) = \mathcal{F}'(x)[/math] - производная Фреше отображения [math]\mathcal{F}[/math] в точке [math]x[/math].

Установим теорему, обобщающую классическое правило дифференцирования сложной функции :

Теорема:
Композиция дифференцируемых отображений, дифференцируема. Производная Фреше равна композиции производных Фреше отображений. Пусть [math]\mathcal{F} : V_r(x) \to Y, y = \mathcal{F}(x), \mathcal{G} : V_{r_1}(y) \to Z \quad \exists \mathcal{F}'(x), \mathcal{G}'(y), \mathcal{T} = \mathcal{G} \circ \mathcal{F}[/math], тогда [math]\exists \mathcal{T}'(x) = \mathcal{G}'(y)\mathcal{F}'(x)[/math]
Доказательство:
[math]\triangleright[/math]
Доказательство копирует классическое доказательство, с заменой знака модуля на знак нормы.
[math]\triangleleft[/math]

Из дифференцируемости следует непрерывность : [math]\left|| \mathcal{F}'(x)\Delta x |\right| \le \left|| \mathcal{F}'(x)|\right| \left|| \Delta x |\right|[/math]

[math]\left|| \mathcal{F}(x + \Delta x) - \mathcal{F}(x)|\right| \le \left|| \mathcal{F}'(x)|\right| \left||\Delta x |\right| + \left|| \alpha(\Delta x)|\right| \left||\Delta x|\right|[/math]

Правая часть этого выражения стремится к нулю, следовательно [math]\mathcal{F}[/math] - непрерывна в [math]x[/math].

Найдем вид матрицы производной Фреше при [math]\mathcal{F} : V_r(x) = \mathbb{R}^n \to \mathbb{R}^m[/math]. Пусть [math]\mathcal{F}'(\overline{x}) = A_{ij}[/math]

По условию [math]\mathcal{F}(\overline{x} + \Delta\overline{x}) - \mathcal{F}(\overline{x}) = \mathcal{F}'(\overline{x})\Delta\overline{x} + \alpha(\Delta\overline{x})\left||\Delta\overline{x}|\right|[/math]

[math]\mathcal{F} = (\mathcal{F}_1,...,\mathcal{F}_n), \quad \mathcal{F}_i(\overline{x} + \Delta\overline{x}) - \mathcal{F}_i(\overline{x}) = \sum\limits_{j = 1}^{n}A_{ij} \Delta x_j + \alpha_i(\Delta\overline{x})\left||\Delta\overline{x}|\right|[/math]

[math] \Delta x = h \cdot e_j = (0, 0,..,h,..,0), \quad \forall h \in \mathbb{R}[/math]

[math]\mathcal{F}_i(\overline{x} + h\overline{e_j}) - \mathcal{F}_i(\overline{x}) = A_{ij}h + \alpha_i(h\overline{e_j})|h|[/math]

[math]\frac{\mathcal{F}_i(\overline{x} + h\overline{e_j}) - \mathcal{F}_i(x)}{h} = A_{ij} + \alpha_i(h e_j) \frac{|h|}{h}[/math]

У дроби справа будет предел, т.к [math]\alpha_i(h e_j) \to 0[/math] при [math]h \to 0[/math] и [math]\left| \frac{|h|}{h} \right | \le 1[/math]

[math]A_{ij} = \lim\limits_{h \to 0} \frac{\mathcal{F}_i(\overline{x} + h\overline{e_j}) - \mathcal{F}_i(x)}{h}[/math]


Определение:
Данный предел называется частной производной первого порядка функции [math]\mathcal{F}_i[/math] по переменной [math]x_j[/math]. [math]A_{ij} = \lim\limits_{h \to 0} \frac{\mathcal{F}_i(\overline{x} + h\overline{e_j}) - \mathcal{F}_i(x)}{h} = \frac{\delta \mathcal{F}_i}{\delta x_j}[/math]


Определение:
Матрица, составленная из элементов [math]A_{ij}[/math] - матрица Якоби отображения [math]\mathcal{F}[/math]. \quad [math] A = (\mathcal{F}'(x)) = \begin{pmatrix} \frac{\delta \mathcal{F}_1}{\delta x_1} & \frac{\delta \mathcal{F}_1}{\delta x_2} &...&\frac{\delta \mathcal{F}_1}{\delta x_n}\\ \frac{\delta \mathcal{F}_2}{\delta x_1} & \frac{\delta \mathcal{F}_2}{\delta x_2} &...&\frac{\delta \mathcal{F}_2}{\delta x_n}\\ ...&...&...&...\\ \frac{\delta \mathcal{F}_m}{\delta x_1} & \frac{\delta \mathcal{F}_m}{\delta x_1} &...&\frac{\delta \mathcal{F}_m}{\delta x_n} \end{pmatrix} [/math]


Определение:
При [math]n = m[/math] определитель этой матрицы - якобиан.