Равномерная сходимость несобственных интегралов, зависящих от параметра — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Новая страница: «Категория: В разработке»)
 
м
Строка 1: Строка 1:
[[Категория: В разработке]]
+
<wikitex>
 +
$ z = f(x, y), \quad x \ge a, y \in [c; d] $ (можно нарисовать тут полоску).
 +
 
 +
Считаем, что f непрерывна в этой полосе.
 +
 
 +
$ F(y) = \int\limits_a^{\infty} f(x, y) dx $ - является несобственным интегралом, зависящим от параметра y.
 +
 
 +
Если считать, что для некоторого $ y_0 \in [c; d] $, $ \int\limits_a^{\infty} f(x, y_0) dx $ - сходится, то $ \int\limits_A^{\infty} f(x, y_0) dx \xrightarrow[A \to + \infty]{} 0 $, или $ \forall \varepsilon > 0 \exists A_0(y_0): \forall A > A_0(y_0) \Rightarrow |\int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $
 +
 
 +
Для исключения зависимости $ A_0 $ от $ y_0 $, вводится понятие для равномерной сходимости.
 +
 
 +
$ \forall \varepsilon > 0 : \exists A_0 : \forall A > A_0 , \forall y_0 \in [c; d] \Rightarrow | \int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $.
 +
 
 +
Прослеживается аналогия с функциональными рядами:
 +
 
 +
$ \forall \varepsilon > 0 : \exists N : \forall n > N , \forall x \in E : | \sum\limits_{m = n}^{\infty} f_m(x) | < \varepsilon $
 +
 
 +
Сопоставляем два определения, видим $ n \leftrightarrow x $, $ x \leftrightarrow y $. Аналогия важна в том смысле, что доказательство свойств интеграла копирует доказательство соответствующих свойств функциональных рядов.
 +
 
 +
Установим признак Вейерштрасса равномерной сходимости несобственных интегралов.
 +
 
 +
Пусть $ |f(x, y) | \le g(x) \qquad \forall x \ge 0, \forall y \in [c; d] $.
 +
 
 +
Пусть $ \int\limits_a^{\infty} g(x) dx $ - сходится. Тогда соответствующий интеграл равномерно сходится на $ [c; d] $.
 +
 
 +
$ B > A: \left| \int\limits_A^B f(x, y) dx \right| \le \int\limits_A^B |f(x, y)| dx \le \int\limits_A^B g(x) dx $.
 +
 
 +
Интеграл g сходится, следовательно, по критерию Коши сходимости интегралов,  $ \int\limits_A^B g(x) dx \xrightarrow[A, B \to + \infty]{} 0 \Rightarrow \int\limits_A^B f(x, y) dx \xrightarrow[A, B \to + \infty]{} 0 $, следовательно, для любого $ y $ - это сходящиеся интегралы. Это позволяет в неравенстве перейти к пределу при B, стремящемся к бесконечности:
 +
 
 +
$ \left| \int\limits_A^{\infty} f(x, y) dx \right| \le \int\limits_A^B g(x) dx $
 +
 
 +
$ \forall \varepsilon > 0: \exists A_0: \forall A > A_0 \Rightarrow \int\limits_A^{\infty} g(x) dx < \varepsilon $, что возможно, так как $ \int g(x) dx $ - сходится.
 +
 
 +
 
 +
</wikitex>

Версия 06:54, 4 июня 2011

<wikitex> $ z = f(x, y), \quad x \ge a, y \in [c; d] $ (можно нарисовать тут полоску).

Считаем, что f непрерывна в этой полосе.

$ F(y) = \int\limits_a^{\infty} f(x, y) dx $ - является несобственным интегралом, зависящим от параметра y.

Если считать, что для некоторого $ y_0 \in [c; d] $, $ \int\limits_a^{\infty} f(x, y_0) dx $ - сходится, то $ \int\limits_A^{\infty} f(x, y_0) dx \xrightarrow[A \to + \infty]{} 0 $, или $ \forall \varepsilon > 0 \exists A_0(y_0): \forall A > A_0(y_0) \Rightarrow |\int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $

Для исключения зависимости $ A_0 $ от $ y_0 $, вводится понятие для равномерной сходимости.

$ \forall \varepsilon > 0 : \exists A_0 : \forall A > A_0 , \forall y_0 \in [c; d] \Rightarrow | \int\limits_A^{\infty} f(x, y_0) dx | < \varepsilon $.

Прослеживается аналогия с функциональными рядами:

$ \forall \varepsilon > 0 : \exists N : \forall n > N , \forall x \in E : | \sum\limits_{m = n}^{\infty} f_m(x) | < \varepsilon $

Сопоставляем два определения, видим $ n \leftrightarrow x $, $ x \leftrightarrow y $. Аналогия важна в том смысле, что доказательство свойств интеграла копирует доказательство соответствующих свойств функциональных рядов.

Установим признак Вейерштрасса равномерной сходимости несобственных интегралов.

Пусть $ |f(x, y) | \le g(x) \qquad \forall x \ge 0, \forall y \in [c; d] $.

Пусть $ \int\limits_a^{\infty} g(x) dx $ - сходится. Тогда соответствующий интеграл равномерно сходится на $ [c; d] $.

$ B > A: \left| \int\limits_A^B f(x, y) dx \right| \le \int\limits_A^B |f(x, y)| dx \le \int\limits_A^B g(x) dx $.

Интеграл g сходится, следовательно, по критерию Коши сходимости интегралов, $ \int\limits_A^B g(x) dx \xrightarrow[A, B \to + \infty]{} 0 \Rightarrow \int\limits_A^B f(x, y) dx \xrightarrow[A, B \to + \infty]{} 0 $, следовательно, для любого $ y $ - это сходящиеся интегралы. Это позволяет в неравенстве перейти к пределу при B, стремящемся к бесконечности:

$ \left| \int\limits_A^{\infty} f(x, y) dx \right| \le \int\limits_A^B g(x) dx $

$ \forall \varepsilon > 0: \exists A_0: \forall A > A_0 \Rightarrow \int\limits_A^{\infty} g(x) dx < \varepsilon $, что возможно, так как $ \int g(x) dx $ - сходится.


</wikitex>