Лемма Шварца-Зиппеля — различия между версиями
Alant (обсуждение | вклад) |
|||
| Строка 26: | Строка 26: | ||
== Применение == | == Применение == | ||
| − | С помощью этой леммы можно, например, показать принадлежность задачи проверки эквивалентности двух полиномов классу [[ | + | С помощью этой леммы можно, например, показать принадлежность задачи проверки эквивалентности двух полиномов классу [[Сложностные классы RP и coRP|coRP]]. |
=== Формулировка задачи === | === Формулировка задачи === | ||
Пусть даны два полинома — <tex> p(x_1, ..., x_n) </tex> и <tex> q(x_1, ..., x_n) </tex>. Необходимо проверить, верно ли, что <tex> p \equiv q </tex>. | Пусть даны два полинома — <tex> p(x_1, ..., x_n) </tex> и <tex> q(x_1, ..., x_n) </tex>. Необходимо проверить, верно ли, что <tex> p \equiv q </tex>. | ||
Версия 16:30, 15 апреля 2010
Содержание
Формулировка
Пусть задан полином степени над полем , а также произвольное множество . Пусть также — набор независимых случайных величин, равномерно распределенных в . Тогда .
Доказательство
Проведем доказательство леммы индукцией по .
База индукции
В случае, когда , утвержение следует из того, что произвольный полином степени над полем имеет не более чем корней.
Индукционный переход
Пусть утверждение верно для всех полиномов степени (и для всех меньших). Разложим по степеням :
Так как , хотя бы один полином . Пусть . По формуле полной вероятности имеем: .
Заметим, что — полином от переменных, а потому к нему применимо предположение индукции. Кроме того, . Таким образом, .
Для получения оценки второго слагаемого зафиксируем некоторый набор , для которого . Тогда для как для полинома одной переменной степени будет выполнено: .
, что и требовалось доказать.
Применение
С помощью этой леммы можно, например, показать принадлежность задачи проверки эквивалентности двух полиномов классу coRP.
Формулировка задачи
Пусть даны два полинома — и . Необходимо проверить, верно ли, что .
Утверждение
Сформулированная выше задача принадлежит классу .
Доказательство
Для доказательства построим такой алгоритм m, что:
Для этого рассмотрим полином . Очевидно, что . Рассмотрим над некоторым полем . Очевидно, что если , то это будет выполнено и в (обратное, вообще говоря, неверно). Возьмем случайный набор . По доказанной выше лемме . Тогда алгоритм, по данным и выдающий , удовлетворяет поставленным условиям, лишь только , что тем более верно, если .