Объединение матроидов, доказательство того, что объединение является матроидом — различия между версиями
(Новая страница: «{{Определение |definition = <tex>M_1 = \langle X_1, I_1 \rangle </tex> и <tex> M_2 = \langle X_2, I_2 \rangle </tex> — матроиды. Тогда <…») |
|||
Строка 30: | Строка 30: | ||
{{Теорема | {{Теорема | ||
|statement = Объединение матроидов является матроидом | |statement = Объединение матроидов является матроидом | ||
− | |proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения матроидов. Из леммы знаем, что <tex>M_1 \oplus M_2= \langle X = X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g}, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle </tex> является матроидом. Пусть <tex>f \colon X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g} \to X_1 \cup X_2. Тогда по лемме <tex>M_3 = \langle X_1 \cup X_2, I_3 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>. | + | |proof = Рассмотрим матроиды <tex>M_1</tex> и <tex>M_2</tex> из определения объединения матроидов. Из [[Прямая сумма матроидов|леммы]] знаем, что <tex>M_1 \oplus M_2= \langle X = X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g}, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle </tex> является матроидом. Пусть <tex>f \colon X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g} \to X_1 \cup X_2. Тогда по лемме <tex>M_3 = \langle X_1 \cup X_2, I_3 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle</tex> — матроид, в котором независимым множествам соответствуют объединения независимых множеств в <tex>M_1</tex> и <tex>M_2</tex>. То есть <tex>M_3 = M_1 \cup M_2</tex>. |
}} | }} |
Версия 09:12, 7 июня 2011
Определение: |
и — матроиды. Тогда . |
Лемма: |
. Тогда является матроидом. |
Доказательство: |
Докажем аксиомы независимости для .1.
2. , значит . . Значит . 3. Пусть . Докажем, что. . по второй аксиоме для . , значит по третьей аксиоме для , . Следовательно . . Значит |
Теорема: |
Объединение матроидов является матроидом |
Доказательство: |
Рассмотрим матроиды леммы знаем, что является матроидом. Пусть — матроид, в котором независимым множествам соответствуют объединения независимых множеств в и . То есть . | и из определения объединения матроидов. Из