Пересечение матроидов, определение, примеры — различия между версиями
| Строка 4: | Строка 4: | ||
| }} | }} | ||
| − | + | ==Примеры== | |
| 1) <tex>M_1</tex> - графовый матроид, <tex>M_2</tex> - "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение - это разноцветный лес (англ. Rainbow forests) | 1) <tex>M_1</tex> - графовый матроид, <tex>M_2</tex> - "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение - это разноцветный лес (англ. Rainbow forests) | ||
| 2) Пусть <tex>G</tex>  - двудольный граф и заданы два матроида <tex>M_1 = (X, I_1)</tex>, <tex>M_2 = (X, I_2)</tex>, где <tex>X</tex> - множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение - это множество всевозможных паросочетаний графа. | 2) Пусть <tex>G</tex>  - двудольный граф и заданы два матроида <tex>M_1 = (X, I_1)</tex>, <tex>M_2 = (X, I_2)</tex>, где <tex>X</tex> - множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение - это множество всевозможных паросочетаний графа. | ||
Версия 20:11, 7 июня 2011
| Определение: | 
| Пусть даны два матроида и . Пересечением матроидов и называется пара , где - носитель исходных матроидов, а . | 
Примеры
1) - графовый матроид, - "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение - это разноцветный лес (англ. Rainbow forests)
2) Пусть - двудольный граф и заданы два матроида , , где - множество ребёр графа, , . Тогда их пересечение - это множество всевозможных паросочетаний графа.
