Поиск k-ой порядковой статистики за линейное время — различия между версиями
Niko (обсуждение | вклад) |
Niko (обсуждение | вклад) (→Описание алгоритма) |
||
Строка 4: | Строка 4: | ||
== Описание алгоритма == | == Описание алгоритма == | ||
− | Разбиваем наш массив на группы по 5 элементов(на самом деле можно разбивать и на другое нечетное количество элементов больших 5) | + | Разбиваем наш массив на группы по 5 элементов(на самом деле можно разбивать и на другое нечетное количество элементов больших 5). Затем в каждой группе находим средний элемент(медиану), это можно сделать любой сортировкой. И запустить рекурсивно данный алгоритм от медиан. Тем самым мы найдем средний элемент среди медиан, то есть медиану медиан. Эту медиана медиан выберем рассекающим элементом для поиска <tex>k</tex>-го элемента. Далее простыми обменами получаем слева от рассекающего элемента числа меньшие него, а справа числа больше рассекающего элемента или равные ему. И запускаем нашу функцию от той части массива в котором будет лежать <tex>k</tex>-й элемент. |
== Анализ времени работы алгоритма == | == Анализ времени работы алгоритма == |
Версия 21:01, 7 июня 2011
Историческая справка
Алгоритм Блюма-Флойда-Пратта-Ривеста-Тарьяна (BFPRT-алгоритм) создан Мануэлем Блюмом(Manuel Blum), Робертом Флойдом(Robert Floyd), Воганом Рональдом Праттом(Vaughan Ronald Pratt), Роном Ривестом(Ron Rivest) и Рональдом Тарьяном(Robert Tarjan) в 1973 году.
Описание алгоритма
Разбиваем наш массив на группы по 5 элементов(на самом деле можно разбивать и на другое нечетное количество элементов больших 5). Затем в каждой группе находим средний элемент(медиану), это можно сделать любой сортировкой. И запустить рекурсивно данный алгоритм от медиан. Тем самым мы найдем средний элемент среди медиан, то есть медиану медиан. Эту медиана медиан выберем рассекающим элементом для поиска
-го элемента. Далее простыми обменами получаем слева от рассекающего элемента числа меньшие него, а справа числа больше рассекающего элемента или равные ему. И запускаем нашу функцию от той части массива в котором будет лежать -й элемент.Анализ времени работы алгоритма
Тогда покажем, что для всех выполняется неравенство . Докажем по индукции
- Очевидно, что для малых выполняется неравенство
- Тогда по предположению индукции и , тогда