Пересечение матроидов, определение, примеры — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Пусть даны два матроида <tex>M_1 = (X, I_1)</tex> и <tex>M_2 = (X, I_2)</tex>. '''Пересечением матроидов''' <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = (X, I)</tex>, где <tex>X</tex> - носитель исходных матроидов, а <tex> I = I_1 \cap I_2</tex>.
+
Пусть даны два матроида <tex>M_1 = \langle X, I_1\rangle</tex> и <tex>M_2 = \langle X, I_2 \rangle</tex>. '''Пересечением матроидов''' <tex>M_1</tex> и <tex>M_2</tex> называется пара <tex>M_1 \cap M_2 = \langle X, I \rangle</tex>, где <tex>X</tex> - носитель исходных матроидов, а <tex> I = I_1 \cap I_2</tex>.
 
}}
 
}}
  
Строка 8: Строка 8:
 
1) <tex>M_1</tex> - графовый матроид, <tex>M_2</tex> - "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение - это разноцветный лес (англ. Rainbow forests)
 
1) <tex>M_1</tex> - графовый матроид, <tex>M_2</tex> - "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение - это разноцветный лес (англ. Rainbow forests)
  
2) Пусть <tex>G</tex>  - двудольный граф и заданы два матроида <tex>M_1 = (X, I_1)</tex>, <tex>M_2 = (X, I_2)</tex>, где <tex>X</tex> - множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение - это множество всевозможных паросочетаний графа.
+
2) Пусть <tex>G</tex>  - двудольный граф и заданы два матроида <tex>M_1 = \langle X, I_1 \rangle</tex>, <tex>M_2 = \langle X, I_2 \rangle</tex>, где <tex>X</tex> - множество ребёр графа, <tex>I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}</tex>, <tex>I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}</tex>. Тогда их пересечение - это множество всевозможных паросочетаний графа.

Версия 22:39, 7 июня 2011

Определение:
Пусть даны два матроида [math]M_1 = \langle X, I_1\rangle[/math] и [math]M_2 = \langle X, I_2 \rangle[/math]. Пересечением матроидов [math]M_1[/math] и [math]M_2[/math] называется пара [math]M_1 \cap M_2 = \langle X, I \rangle[/math], где [math]X[/math] - носитель исходных матроидов, а [math] I = I_1 \cap I_2[/math].


Примеры

1) [math]M_1[/math] - графовый матроид, [math]M_2[/math] - "разноцветный" матроид (Множество независимо, если в нём нет двух ребер одного цвета). Тогда их пересечение - это разноцветный лес (англ. Rainbow forests)

2) Пусть [math]G[/math] - двудольный граф и заданы два матроида [math]M_1 = \langle X, I_1 \rangle[/math], [math]M_2 = \langle X, I_2 \rangle[/math], где [math]X[/math] - множество ребёр графа, [math]I_1 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in L \}[/math], [math]I_2 = \{F \subseteq X: deg(v) \le 1 \: \forall v \in R \}[/math]. Тогда их пересечение - это множество всевозможных паросочетаний графа.