Теоретический минимум по математическому анализу за 2 семестр — различия между версиями
м (→Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций) |
м (пофиксил пункты) |
||
Строка 150: | Строка 150: | ||
== Вопрос №15. Степенной ряд, как ряд Тейлора своей суммы== | == Вопрос №15. Степенной ряд, как ряд Тейлора своей суммы== | ||
− | + | 111 | |
== Вопрос №16. Достаточное условие разложимости функции в ряд Тейлора== | == Вопрос №16. Достаточное условие разложимости функции в ряд Тейлора== | ||
− | + | 1111 | |
== Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций == | == Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций == | ||
Строка 159: | Строка 159: | ||
$ \ln(1 + x) = \sum\limits_{k = 1}^n (-1)^{k - 1} \frac{x^k}k + r_n(x) $, причем $ r_n(x) = \frac{\ln^{n + 1} (1 + \theta_n x)}{(n + 1)!} x^{n + 1}, \theta_n \in (0; 1) $ | $ \ln(1 + x) = \sum\limits_{k = 1}^n (-1)^{k - 1} \frac{x^k}k + r_n(x) $, причем $ r_n(x) = \frac{\ln^{n + 1} (1 + \theta_n x)}{(n + 1)!} x^{n + 1}, \theta_n \in (0; 1) $ | ||
+ | </wikitex> | ||
== Вопрос №18. Разложение в степенной ряд тригонометрических функций == | == Вопрос №18. Разложение в степенной ряд тригонометрических функций == | ||
+ | <wikitex> | ||
$\sin(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n + 1}}{(2n + 1)!}$ | $\sin(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n + 1}}{(2n + 1)!}$ | ||
$\cos(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n}}{(2n)!}$ | $\cos(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n}}{(2n)!}$ | ||
− | + | </wikitex> | |
== Вопрос №19. Биномиальный ряд Ньютона == | == Вопрос №19. Биномиальный ряд Ньютона == | ||
+ | <wikitex> | ||
$ (1 + x)^{\alpha} = \sum\limits_{k = 1}^{\infty} \left[ \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k \right] + 1, \alpha \in \mathbb{R} $ | $ (1 + x)^{\alpha} = \sum\limits_{k = 1}^{\infty} \left[ \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k \right] + 1, \alpha \in \mathbb{R} $ | ||
− | + | </wikitex> | |
== Вопрос №20. Формула Стирлинга == | == Вопрос №20. Формула Стирлинга == | ||
+ | <wikitex> | ||
$ n! = \sqrt{2 \pi n} {\left ( \frac ne \right )}^n e^{\frac{\theta_n}{12n}} $ | $ n! = \sqrt{2 \pi n} {\left ( \frac ne \right )}^n e^{\frac{\theta_n}{12n}} $ | ||
</wikitex> | </wikitex> | ||
− | |||
== Вопрос №21. Нормированное пространство: арифметика предела== | == Вопрос №21. Нормированное пространство: арифметика предела== | ||
{{Утверждение | {{Утверждение |
Версия 01:50, 12 июня 2011
Содержание
- 1 Вопрос №1. Суммирование расходящихся рядов методом средних арифметических
- 2 Вопрос №2. Суммирование расходящихся рядов методом Абеля
- 3 Вопрос №3. Теорема Фробениуса
- 4 Вопрос №4. Тауберова теорема Харди
- 5 Вопрос №5. Равномерная сходимость функционального ряда. Критерий Коши
- 6 Вопрос №6. Признак Вейерштрасса
- 7 Вопрос №7. Признак типа Абеля-Дирихле
- 8 Вопрос №8. Предельный переход под знаком функционального ряда
- 9 Вопрос №9. Условия почленного интегрирования функционального ряда
- 10 Вопрос №10. Условия почленного дифференцирования функционального ряда
- 11 Вопрос №11. Лемма Абеля
- 12 Вопрос №12. Теорема о радиусе сходимости
- 13 Вопрос №13. Вычисление радиуса сходимости
- 14 Вопрос №14. Дифференцирование и интегрирование степенных рядов
- 15 Вопрос №15. Степенной ряд, как ряд Тейлора своей суммы
- 16 Вопрос №16. Достаточное условие разложимости функции в ряд Тейлора
- 17 Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций
- 18 Вопрос №18. Разложение в степенной ряд тригонометрических функций
- 19 Вопрос №19. Биномиальный ряд Ньютона
- 20 Вопрос №20. Формула Стирлинга
- 21 Вопрос №21. Нормированное пространство: арифметика предела
- 22 Вопрос №22. Ряды в банаховых пространствах
- 23 Вопрос №23. Унитарные пространства, неравенство Шварца
- 24 Вопрос №24. Гильбертовы пространства, экстремальное свойство ортонормированных систем
Вопрос №1. Суммирование расходящихся рядов методом средних арифметических
Определение: |
Ряд | имеет сумму по методу средних арифметических (обозначают аббревиатурой с.а.), если .
Вопрос №2. Суммирование расходящихся рядов методом Абеля
Определение: |
Пусть дан ряд | и (в классическом смысле). Тогда этот ряд имеет сумму по методу Абеля, если .
Вопрос №3. Теорема Фробениуса
Теорема (Фробениус): |
(с.а) (А). |
Вопрос №4. Тауберова теорема Харди
Теорема (Харди): |
(с.а.)
Тогда, если существует такое , что , то . |
Вопрос №5. Равномерная сходимость функционального ряда. Критерий Коши
Определение: |
Пишут, что . | равномерно сходится к , если
Определение: |
Пусть на , если | задан функциональный ряд . Тогда он равномерно сходится к
Теорема (Критерий Коши равномерной сходимости): |
Ряд равномерно сходится на |
Вопрос №6. Признак Вейерштрасса
Теорема (Вейерштрасс): |
, , , — сходится.
Тогда равномерно сходится на . |
Вопрос №7. Признак типа Абеля-Дирихле
Теорема: |
*
|
Вопрос №8. Предельный переход под знаком функционального ряда
Теорема: |
Пусть на множестве заданы функции , — предельная точка этого множества и
. Тогда если - равномерно сходится на , то выполняется равенство : |
Вопрос №9. Условия почленного интегрирования функционального ряда
Теорема: |
Пусть интегрируема и равномерно сходится к на . Тогда тоже интегрируема, и
. |
Утверждение: |
Пусть функциональный ряд состоит из и равномерно сходится на этом отрезке.
Тогда сумма ряда будет интегрируемой функцией, и будет выполняться: |
Вопрос №10. Условия почленного дифференцирования функционального ряда
Теорема: |
Пусть на задан функциональный ряд , - сходится.
Пусть также - непрерывна на и - равномерно сходится на , тогда на выполняется : . |
Вопрос №11. Лемма Абеля
Лемма (Абель): |
Пусть для некоторого — сходится.
Тогда ряд сходится. |
Вопрос №12. Теорема о радиусе сходимости
Определение: |
— сходится . Заметим, что возможны случаи и . |
Теорема: |
Пусть есть ряд и — его радиус сходимости. Тогда
1) ряд абсолютно сходится.2) ряд сходится абсолютно и равномерно.3) 4) ряд расходится. — неопределённость. |
Вопрос №13. Вычисление радиуса сходимости
Теорема: |
Пусть есть , — его радиус сходимости. Тогда:
1) Если , то .2) Если Замечание: на самом деле, есть формула Коши-Адамара, применимая в любом случае: , то . |
Вопрос №14. Дифференцирование и интегрирование степенных рядов
Вопрос: "Каковы будут радиусы сходимости почленно проинегрированных или продифференцированных рядов?"
Ответ: "Почленное интегрирование или дифференцирование не меняет радиуса сходимости ряда".
Утверждение: |
Промежуток сходимости степенного ряда совпадает с промежутком сходимости продифференцированного степенного ряда |
Вопрос №15. Степенной ряд, как ряд Тейлора своей суммы
111
Вопрос №16. Достаточное условие разложимости функции в ряд Тейлора
1111
Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций
<wikitex> $e^x \stackrel{def}{=} \sum\limits_{k = 0}^{\infty} \frac{x^k}{k!} $
$ \ln(1 + x) = \sum\limits_{k = 1}^n (-1)^{k - 1} \frac{x^k}k + r_n(x) $, причем $ r_n(x) = \frac{\ln^{n + 1} (1 + \theta_n x)}{(n + 1)!} x^{n + 1}, \theta_n \in (0; 1) $ </wikitex>
Вопрос №18. Разложение в степенной ряд тригонометрических функций
<wikitex> $\sin(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n + 1}}{(2n + 1)!}$
$\cos(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n}}{(2n)!}$ </wikitex>
Вопрос №19. Биномиальный ряд Ньютона
<wikitex> $ (1 + x)^{\alpha} = \sum\limits_{k = 1}^{\infty} \left[ \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k \right] + 1, \alpha \in \mathbb{R} $ </wikitex>
Вопрос №20. Формула Стирлинга
<wikitex> $ n! = \sqrt{2 \pi n} {\left ( \frac ne \right )}^n e^{\frac{\theta_n}{12n}} $ </wikitex>
Вопрос №21. Нормированное пространство: арифметика предела
Утверждение: |
Пусть , — последовательности точек нормированного пространства , а — вещественная последовательность. Известно, что , , .
Тогда: |
Вопрос №22. Ряды в банаховых пространствах
Определение: |
Нормированное пространство | называется B-пространством, если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Вопрос №23. Унитарные пространства, неравенство Шварца
Утверждение: |