Теоретический минимум по математическому анализу за 2 семестр — различия между версиями
(→Вопрос №7. Признак типа Абеля-Дирихле) |
Baev.dm (обсуждение | вклад) |
||
Строка 345: | Строка 345: | ||
== Вопрос №38. Дифференциалы высших порядков, теорема о смешанных производных== | == Вопрос №38. Дифференциалы высших порядков, теорема о смешанных производных== | ||
+ | Определим частные производные и дифференциалы высших порядков. | ||
+ | |||
+ | <tex>\frac \partial{\partial x_j}</tex> — оператор, дифференцирующий функцию по <tex>x_j</tex>. Последовательное применение такого рода оператора даёт нам частные производные высших порядков. | ||
+ | Пусть <tex>z = f(x,y)</tex>. Тогда <tex>\frac \partial{\partial y} \left ( \frac {\partial f}{\partial x} \right )\stackrel{\mathrm{def}}{=}\frac {\partial^2 f}{\partial x \partial y}</tex> — частная производная второго порядка функции <tex>f</tex>. Дифференцирование осуществляется по переменной в знаменателе, слева направо. | ||
+ | |||
{{Теорема | {{Теорема | ||
|about=О смешанных производных | |about=О смешанных производных | ||
Строка 350: | Строка 355: | ||
Пусть в двумерном шаре у функции <tex>z = f(x,y)</tex> существуют смешанные производные второго порядка и каждая из них непрерывна в некоторой точке <tex>\overline a</tex> этого шара. Тогда в <tex>\overline a</tex>: <tex>\frac {\partial^2 f}{\partial x \partial y} (\overline a)=\frac {\partial^2 f}{\partial y \partial x}(\overline a)</tex> | Пусть в двумерном шаре у функции <tex>z = f(x,y)</tex> существуют смешанные производные второго порядка и каждая из них непрерывна в некоторой точке <tex>\overline a</tex> этого шара. Тогда в <tex>\overline a</tex>: <tex>\frac {\partial^2 f}{\partial x \partial y} (\overline a)=\frac {\partial^2 f}{\partial y \partial x}(\overline a)</tex> | ||
}} | }} | ||
+ | |||
+ | == Вопрос №39. Формула Тейлора для функции многих переменных== | ||
+ | <tex>f(\overline a+t\Delta \overline a)-f(\overline a)=\sum \limits_{k=1}^n \frac {d^{k}f(\overline a)}{k!}+\frac {d^{n+1}f(\overline a+\theta\Delta \overline a)}{(n+1)!}</tex> | ||
+ | |||
+ | == Вопрос №40. Безусловный экстремум: необходимое и достаточное условия== | ||
+ | {Определение | ||
+ | |definition= | ||
+ | Пусть задан линейный функционал <tex>y = f(x_1, x_2, \dots, x_n) </tex> на <tex> V(\overline{a}) \subset R^n </tex>. | ||
+ | Если при <tex>\| \Delta \overline{a} \| \le \delta</tex>, <tex>\delta \approx 0 \Rightarrow f(\overline{a} + \Delta \overline{a}) \le f(\overline{a})</tex>, то <tex>a</tex> {{---}} '''точка локального максимума'''. Аналогично определяется точка локального минимума. | ||
+ | }} | ||
+ | |||
+ | {{Теорема | ||
+ | |about= | ||
+ | Аналог теоремы Ферма | ||
+ | |statement= | ||
+ | Пусть <tex>f</tex> дифференцируема в точке локального экстремума <tex>a</tex>. Тогда <tex>\forall j = 1..n : \frac{\partial{f}}{\partial{x_j}} \overline{a} = 0</tex> | ||
+ | }} | ||
+ | |||
+ | == Вопрос №41. Локальная теорема о неявном отображении== | ||
+ | {{Теорема | ||
+ | |about= | ||
+ | О неявном отображении | ||
+ | |statement= | ||
+ | Пусть для <tex>f</tex> поставлена задача о неявном отображении, с начальными данными <tex>(x_0,y_0)</tex>. Известно, что в окрестности начальных данных<tex>f_{\overline y}'</tex> непрерывно зависит от <tex>\overline x,\overline y</tex> и непрерывно обратима в <tex>(x_0,y_0)</tex>. Тогда в некоторой окрестности начальных данных неявное отображение существует. | ||
+ | }} | ||
+ | |||
+ | == Вопрос №42. Исследование функции многих переменных на условный экстремум== | ||
+ | <tex>z=f(\overline x, \overline y),~\overline x=(x_1,\dots x_n),~\overline y=(y_1,\dots y_m)</tex>. Пусть заданы «уравнения связи» в количестве m: | ||
+ | |||
+ | <tex>\begin{cases} g_1(\overline x,\overline y)=0\\ | ||
+ | g_2(\overline x,\overline y)=0\\ | ||
+ | \dots\\ | ||
+ | g_m(\overline x,\overline y)=0 \end{cases};</tex> | ||
+ | |||
+ | <tex>(\overline{x_0},\overline{y_0})</tex> — '''условный максимум''' функции <tex>f</tex>, если для всех <tex>\overline x \approx \overline{x_0},~\overline y \approx \overline{y_0}</tex> и <tex>(\overline x,\overline y)</tex>, удовлетворяющих уравнениям связи, выполняется неравенство <tex>f(\overline x,\overline y)\le f(\overline {x_0},\overline {y_0})</tex>. Если же <tex>f(\overline x,\overline y)\ge f(\overline {x_0},\overline {y_0}),~(\overline{x_0},\overline{y_0})</tex> — '''условный минимум'''. | ||
+ | |||
+ | == Вопрос №43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование== | ||
+ | <wikitex> | ||
+ | Рассматриваем $ z = f(x, y) $, заданную на прямоугольнике $ a \le x \le b; \quad c \le y \le d $. | ||
+ | |||
+ | До конца параграфа $ f $ непрерывна как функция двух переменных. | ||
+ | |||
+ | $ F(y) = \int\limits_a^b f(x, y) dx $ - интеграл, зависящий от параметра. | ||
+ | |||
+ | # $ F(y) $ - непрерывна на $ [c; d] $. | ||
+ | # Если существует непрерывная $ \frac{\partial f}{\partial y} $, то cуществует $ F'(y) = \int\limits_a^b \frac{\partial f}{\partial y} (x, y) dx $ - формула Лейбница. | ||
+ | # $ \int\limits_c^d F(y) dy = \int\limits_a^b dx \int\limits_c^d f(x, y) dy $ - формула читается справа налево, является повторным интегралом и по сути означает смену местами интегралов по двум переменным. | ||
+ | |||
+ | </wikitex> |
Версия 04:24, 12 июня 2011
Содержание
- 1 Вопрос №1. Суммирование расходящихся рядов методом средних арифметических
- 2 Вопрос №2. Суммирование расходящихся рядов методом Абеля
- 3 Вопрос №3. Теорема Фробениуса
- 4 Вопрос №4. Тауберова теорема Харди
- 5 Вопрос №5. Равномерная сходимость функционального ряда. Критерий Коши
- 6 Вопрос №6. Признак Вейерштрасса
- 7 Вопрос №7. Признак типа Абеля-Дирихле
- 8 Вопрос №8. Предельный переход под знаком функционального ряда
- 9 Вопрос №9. Условия почленного интегрирования функционального ряда
- 10 Вопрос №10. Условия почленного дифференцирования функционального ряда
- 11 Вопрос №11. Лемма Абеля
- 12 Вопрос №12. Теорема о радиусе сходимости
- 13 Вопрос №13. Вычисление радиуса сходимости
- 14 Вопрос №14. Дифференцирование и интегрирование степенных рядов
- 15 Вопрос №15. Степенной ряд, как ряд Тейлора своей суммы
- 16 Вопрос №16. Достаточное условие разложимости функции в ряд Тейлора
- 17 Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций
- 18 Вопрос №18. Разложение в степенной ряд тригонометрических функций
- 19 Вопрос №19. Биномиальный ряд Ньютона
- 20 Вопрос №20. Формула Стирлинга
- 21 Вопрос №21. Нормированное пространство: арифметика предела
- 22 Вопрос №22. Ряды в банаховых пространствах
- 23 Вопрос №23. Унитарные пространства, неравенство Шварца
- 24 Вопрос №24. Гильбертовы пространства, экстремальное свойство ортонормированных систем
- 25 Вопрос №25. Ортогональные ряды в гильбертовых пространствах.
- 26 Вопрос №26. Принцип сжатия Банаха
- 27 Вопрос №27. Линейные операторы в НП: непрерывность и ограниченность
- 28 Вопрос №28. Норма линейного оператора
- 29 Вопрос №29. Линейные функционалы в унитарном пространстве, разделение точек
- 30 Вопрос №30. Пространство R^n : покоординатная сходимость
- 31 Вопрос №31. Полнота R^n
- 32 Вопрос №32. Критерий компактности в R^n
- 33 Ворпос №33. Непрерывные отображения в R^n: координатные функции, непрерывность линейных операторов
- 34 Вопрос №34. Дифференциал отображения и частные производные, дифференцируемость суперпозиции
- 35 Вопрос №35. Формула конечных приращений для функции многих переменных
- 36 Вопрос №36. Неравенство Лагранжа
- 37 Вопрос №37. Достаточное условие дифференцируемости функции многих переменных
- 38 Вопрос №38. Дифференциалы высших порядков, теорема о смешанных производных
- 39 Вопрос №39. Формула Тейлора для функции многих переменных
- 40 Вопрос №40. Безусловный экстремум: необходимое и достаточное условия
- 41 Вопрос №41. Локальная теорема о неявном отображении
- 42 Вопрос №42. Исследование функции многих переменных на условный экстремум
- 43 Вопрос №43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование
Вопрос №1. Суммирование расходящихся рядов методом средних арифметических
Определение: |
Ряд | имеет сумму по методу средних арифметических (обозначают аббревиатурой с.а.), если .
Вопрос №2. Суммирование расходящихся рядов методом Абеля
Определение: |
Пусть дан ряд | и (в классическом смысле). Тогда этот ряд имеет сумму по методу Абеля, если .
Вопрос №3. Теорема Фробениуса
Теорема (Фробениус): |
(с.а) (А). |
Вопрос №4. Тауберова теорема Харди
Теорема (Харди): |
(с.а.)
Тогда, если существует такое , что , то . |
Вопрос №5. Равномерная сходимость функционального ряда. Критерий Коши
Определение: |
Пишут, что . | равномерно сходится к , если
Определение: |
Пусть на , если | задан функциональный ряд . Тогда он равномерно сходится к
Теорема (Критерий Коши равномерной сходимости): |
Ряд равномерно сходится на |
Вопрос №6. Признак Вейерштрасса
Теорема (Вейерштрасс): |
, , , — сходится.
Тогда равномерно сходится на . |
Вопрос №7. Признак типа Абеля-Дирихле
Теорема: |
*
|
Вопрос №8. Предельный переход под знаком функционального ряда
Теорема: |
Пусть на множестве заданы функции , — предельная точка этого множества и
. Тогда если - равномерно сходится на , то выполняется равенство : |
Вопрос №9. Условия почленного интегрирования функционального ряда
Теорема: |
Пусть интегрируема и равномерно сходится к на . Тогда тоже интегрируема, и
. |
Утверждение: |
Пусть функциональный ряд состоит из и равномерно сходится на этом отрезке.
Тогда сумма ряда будет интегрируемой функцией, и будет выполняться: |
Вопрос №10. Условия почленного дифференцирования функционального ряда
Теорема: |
Пусть на задан функциональный ряд , - сходится.
Пусть также - непрерывна на и - равномерно сходится на , тогда на выполняется : . |
Вопрос №11. Лемма Абеля
Лемма (Абель): |
Пусть для некоторого — сходится.
Тогда ряд сходится. |
Вопрос №12. Теорема о радиусе сходимости
Определение: |
— сходится . Заметим, что возможны случаи и . |
Теорема: |
Пусть есть ряд и — его радиус сходимости. Тогда
1) ряд абсолютно сходится.2) ряд сходится абсолютно и равномерно.3) 4) ряд расходится. — неопределённость. |
Вопрос №13. Вычисление радиуса сходимости
Теорема: |
Пусть есть , — его радиус сходимости. Тогда:
1) Если , то .2) Если Замечание: на самом деле, есть формула Коши-Адамара, применимая в любом случае: , то . |
Вопрос №14. Дифференцирование и интегрирование степенных рядов
Вопрос: "Каковы будут радиусы сходимости почленно проинегрированных или продифференцированных рядов?"
Ответ: "Почленное интегрирование или дифференцирование не меняет радиуса сходимости ряда".
Утверждение: |
Промежуток сходимости степенного ряда совпадает с промежутком сходимости продифференцированного степенного ряда |
Вопрос №15. Степенной ряд, как ряд Тейлора своей суммы
111
Вопрос №16. Достаточное условие разложимости функции в ряд Тейлора
1111
Вопрос №17. Разложение в степенной ряд показательной и логарифмической функций
<wikitex> $e^x \stackrel{def}{=} \sum\limits_{k = 0}^{\infty} \frac{x^k}{k!} $
$ \ln(1 + x) = \sum\limits_{k = 1}^n (-1)^{k - 1} \frac{x^k}k + r_n(x) $, причем $ r_n(x) = \frac{\ln^{n + 1} (1 + \theta_n x)}{(n + 1)!} x^{n + 1}, \theta_n \in (0; 1) $ </wikitex>
Вопрос №18. Разложение в степенной ряд тригонометрических функций
<wikitex> $\sin(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n + 1}}{(2n + 1)!}$
$\cos(x) = \sum\limits_{n = 0}^{\infty} {(-1)}^n \frac{x^{2n}}{(2n)!}$ </wikitex>
Вопрос №19. Биномиальный ряд Ньютона
<wikitex> $ (1 + x)^{\alpha} = \sum\limits_{k = 1}^{\infty} \left[ \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} x^k \right] + 1, \alpha \in \mathbb{R} $ </wikitex>
Вопрос №20. Формула Стирлинга
<wikitex> $ n! = \sqrt{2 \pi n} {\left ( \frac ne \right )}^n e^{\frac{\theta_n}{12n}} $ </wikitex>
Вопрос №21. Нормированное пространство: арифметика предела
Утверждение: |
Пусть , — последовательности точек нормированного пространства , а — вещественная последовательность. Известно, что , , .
Тогда: |
Вопрос №22. Ряды в банаховых пространствах
Определение: |
Нормированное пространство | называется B-пространством, если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Вопрос №23. Унитарные пространства, неравенство Шварца
Утверждение: |
Вопрос №24. Гильбертовы пространства, экстремальное свойство ортонормированных систем
Вопрос №25. Ортогональные ряды в гильбертовых пространствах.
Определение: |
Ряд | является ортогональным, если .
В частности, так как - ОНС в (гильбертово), то — ортогональный ряд.
Теорема: |
- сходящийся ортогональный ряд .
При этом, если x - сумма ряда, то выполняется теорема Пифагора: |
Вопрос №26. Принцип сжатия Банаха
Определение: |
Пусть — сжатие на шаре , если . | — B-пространство. Пусть — замкнутый шар в .
Теорема (Банах): |
У любого сжимающего отображения существует ровно одна неподвижная точка . |
Вопрос №27. Линейные операторы в НП: непрерывность и ограниченность
Определение: |
Пусть | , — нормированные пространства, . называется линейным оператором, если
Определение: |
Л.о. называется ограниченным, если |
Определение: |
Л.о. непрерывен в X, если |
Теорема: |
Линейный оператор непрерывен тогда и только тогда, когда он ограничен. |
Вопрос №28. Норма линейного оператора
Определение: |
Нормой ограниченного оператора | является .
Вопрос №29. Линейные функционалы в унитарном пространстве, разделение точек
Определение: |
Линейный функционал - линейный оператор вида TODO: точно так? | , где - гильбертово пространство.
Теорема: | ||||||||||||||||||||
Для любого существует ограниченный линейный функционал , обладающий такими свойствами:
Вопрос №30. Пространство R^n : покоординатная сходимость
Вопрос №31. Полнота R^n
Вопрос №32. Критерий компактности в R^nВорпос №33. Непрерывные отображения в R^n: координатные функции, непрерывность линейных операторовВопрос №34. Дифференциал отображения и частные производные, дифференцируемость суперпозиции
Вопрос №35. Формула конечных приращений для функции многих переменных
Вопрос №36. Неравенство Лагранжа
Вопрос №37. Достаточное условие дифференцируемости функции многих переменных
Вопрос №38. Дифференциалы высших порядков, теорема о смешанных производныхОпределим частные производные и дифференциалы высших порядков. — оператор, дифференцирующий функцию по . Последовательное применение такого рода оператора даёт нам частные производные высших порядков. Пусть . Тогда — частная производная второго порядка функции . Дифференцирование осуществляется по переменной в знаменателе, слева направо.
Вопрос №39. Формула Тейлора для функции многих переменных
Вопрос №40. Безусловный экстремум: необходимое и достаточное условия{Определение |
Теорема (Аналог теоремы Ферма): |
Пусть дифференцируема в точке локального экстремума . Тогда |
Вопрос №41. Локальная теорема о неявном отображении
Теорема (О неявном отображении): |
Пусть для поставлена задача о неявном отображении, с начальными данными . Известно, что в окрестности начальных данных непрерывно зависит от и непрерывно обратима в . Тогда в некоторой окрестности начальных данных неявное отображение существует. |
Вопрос №42. Исследование функции многих переменных на условный экстремум
. Пусть заданы «уравнения связи» в количестве m:
— условный максимум функции , если для всех и , удовлетворяющих уравнениям связи, выполняется неравенство . Если же — условный минимум.
Вопрос №43. Определенный интеграл, зависящий от параметра: непрерывность, интегрирование и дифференцирование
<wikitex> Рассматриваем $ z = f(x, y) $, заданную на прямоугольнике $ a \le x \le b; \quad c \le y \le d $.
До конца параграфа $ f $ непрерывна как функция двух переменных.
$ F(y) = \int\limits_a^b f(x, y) dx $ - интеграл, зависящий от параметра.
- $ F(y) $ - непрерывна на $ [c; d] $.
- Если существует непрерывная $ \frac{\partial f}{\partial y} $, то cуществует $ F'(y) = \int\limits_a^b \frac{\partial f}{\partial y} (x, y) dx $ - формула Лейбница.
- $ \int\limits_c^d F(y) dy = \int\limits_a^b dx \int\limits_c^d f(x, y) dy $ - формула читается справа налево, является повторным интегралом и по сути означает смену местами интегралов по двум переменным.
</wikitex>