Теорема Валианта-Вазирани — различия между версиями
Ulyantsev (обсуждение | вклад) |
Ulyantsev (обсуждение | вклад) |
||
Строка 17: | Строка 17: | ||
Пусть формуле <tex>\phi(x_1 \ldots x_n)</tex> с ''n'' переменными соответствует ''n''-битное число <tex>x</tex>, которое кодирует значения переменных. | Пусть формуле <tex>\phi(x_1 \ldots x_n)</tex> с ''n'' переменными соответствует ''n''-битное число <tex>x</tex>, которое кодирует значения переменных. | ||
− | Выберем равновероятно случайным образом целое число <tex>i</tex> из отрезка [0..''n'']. | + | *Выберем равновероятно случайным образом целое число <tex>i</tex> из отрезка [0..''n'']. Определим число <tex>b_i = 2^{i + 2}n^2</tex>. |
− | Определим число <tex>b_i = 2^{i + 2}n^2</tex>. | ||
− | Выберем равновероятно случайным образом целые числа <tex>p_i</tex> из отрезка [1..<tex>b_i</tex>] и <tex>r_i</tex> из отрезка [0..<tex>b_i</tex>]. | + | *Выберем равновероятно случайным образом целые числа <tex>p_i</tex> из отрезка [1..<tex>b_i</tex>] и <tex>r_i</tex> из отрезка [0..<tex>b_i</tex>]. |
− | Добавим в набор формулу | + | *Добавим в набор формулу <tex>\phi_k = \phi \wedge (x \mod p_i = r_i)</tex>, где выражение <tex>(x \mod p_i = r_i)</tex> в данном случае обозначает булеву запись в КНФ, зависящую от переменных <tex>x_1 \ldots x_n</tex> и соответствующую данному сравнению. |
− | <tex> | + | Данное построение работает за полиномиальное время и если формула <tex>\phi</tex> невыполнима, то и все формулы <tex>\phi_k</tex> невыполнимы. |
− | + | ===Вероятность существования единственного удовлетворяющего набора=== | |
==Внешние ссылки== | ==Внешние ссылки== |
Версия 14:12, 3 мая 2010
Теорема Валианта-Вазирани (Valiant–Vazirani theorem) является клевым современным результатом в теории сложности.
Содержание
Формулировка теоремы
Если язык USAT принадлежит классу P, то классы языков NP и RP совпадают.
Доказательство теоремы
Для доказательства этого факта покажем, что по заданной в КНФ формуле
можно за полиномиальное время построить набор формул такой, что:- если формула SAT), то все формулы также неудовлетворимы; неудовлетворима (то есть не принадлежит
- если формула удовлетворима, то с вероятностью большей ½ в наборе найдется формула ∈ USAT.
Таким образом задача принадлежности формулы языку SAT будет разрешаться за полиномиальное время с вероятностью большей ½, то есть SAT ∈ RP, следовательно, NP=RP.
Построение набора формул
Пусть формуле
с n переменными соответствует n-битное число , которое кодирует значения переменных.- Выберем равновероятно случайным образом целое число из отрезка [0..n]. Определим число .
- Выберем равновероятно случайным образом целые числа из отрезка [1.. ] и из отрезка [0.. ].
- Добавим в набор формулу , где выражение в данном случае обозначает булеву запись в КНФ, зависящую от переменных и соответствующую данному сравнению.
Данное построение работает за полиномиальное время и если формула
невыполнима, то и все формулы невыполнимы.