Теорема Валианта-Вазирани — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 11: Строка 11:
 
* если формула <tex>\phi</tex> удовлетворима, то с вероятностью большей ½ в наборе найдется формула <tex>\phi_i</tex> ∈ '''USAT'''.
 
* если формула <tex>\phi</tex> удовлетворима, то с вероятностью большей ½ в наборе найдется формула <tex>\phi_i</tex> ∈ '''USAT'''.
  
Таким образом задача принадлежности формулы языку '''SAT''' будет разрешаться за полиномиальное время с вероятностью большей ½, то есть '''SAT''' ∈ '''RP''', следовательно, '''NP'''='''RP'''.
+
Таким образом задача принадлежности формулы <tex>\phi</tex> языку '''SAT''' будет разрешаться за полиномиальное время с вероятностью односторонней ошибки меньшей ½, то есть '''SAT''' ∈ '''RP''', следовательно, '''NP'''='''RP'''.
  
 
===Построение набора формул===
 
===Построение набора формул===
Строка 23: Строка 23:
 
*Добавим в набор формулу <tex>\phi_k = \phi \wedge (x \mod p_i = r_i)</tex>, где выражение <tex>(x \mod p_i = r_i)</tex> в данном случае обозначает булеву запись в КНФ, зависящую от переменных <tex>x_1 \ldots x_n</tex> и соответствующую данному сравнению.
 
*Добавим в набор формулу <tex>\phi_k = \phi \wedge (x \mod p_i = r_i)</tex>, где выражение <tex>(x \mod p_i = r_i)</tex> в данном случае обозначает булеву запись в КНФ, зависящую от переменных <tex>x_1 \ldots x_n</tex> и соответствующую данному сравнению.
  
Данное построение работает за полиномиальное время и если формула <tex>\phi</tex> невыполнима, то и все формулы <tex>\phi_k</tex> невыполнимы.
+
Данное построение работает за полиномиальное время и если формула <tex>\phi</tex> невыполнима, то любая формула <tex>\phi_k</tex> невыполнима.
  
 
===Вероятность существования единственного удовлетворяющего набора===
 
===Вероятность существования единственного удовлетворяющего набора===
 +
 +
Осталось доказать, что с необходимой нам вероятностью при условии выполнимости <tex>\phi</tex> построенная формула <tex>\phi_k</tex> имеет единственный набор, ее удовлетворяющий.
  
 
==Внешние ссылки==
 
==Внешние ссылки==

Версия 14:58, 3 мая 2010

Теорема Валианта-Вазирани (Valiant–Vazirani theorem) является клевым современным результатом в теории сложности.

Формулировка теоремы

Если язык USAT принадлежит классу P, то классы языков NP и RP совпадают.

Доказательство теоремы

Для доказательства этого факта покажем, что по заданной в КНФ формуле [math]\phi[/math] можно за полиномиальное время построить набор формул [math]\phi_1 \ldots \phi_m[/math] такой, что:

  • если формула [math]\phi[/math] неудовлетворима (то есть не принадлежит SAT), то все формулы [math]\phi_1 \ldots \phi_m[/math] также неудовлетворимы;
  • если формула [math]\phi[/math] удовлетворима, то с вероятностью большей ½ в наборе найдется формула [math]\phi_i[/math]USAT.

Таким образом задача принадлежности формулы [math]\phi[/math] языку SAT будет разрешаться за полиномиальное время с вероятностью односторонней ошибки меньшей ½, то есть SATRP, следовательно, NP=RP.

Построение набора формул

Пусть формуле [math]\phi(x_1 \ldots x_n)[/math] с n переменными соответствует n-битное число [math]x[/math], которое кодирует значения переменных.

  • Выберем равновероятно случайным образом целое число [math]i[/math] из отрезка [0..n]. Определим число [math]b_i = 2^{i + 2}n^2[/math].
  • Выберем равновероятно случайным образом целые числа [math]p_i[/math] из отрезка [1..[math]b_i[/math]] и [math]r_i[/math] из отрезка [0..[math]b_i[/math]].
  • Добавим в набор формулу [math]\phi_k = \phi \wedge (x \mod p_i = r_i)[/math], где выражение [math](x \mod p_i = r_i)[/math] в данном случае обозначает булеву запись в КНФ, зависящую от переменных [math]x_1 \ldots x_n[/math] и соответствующую данному сравнению.

Данное построение работает за полиномиальное время и если формула [math]\phi[/math] невыполнима, то любая формула [math]\phi_k[/math] невыполнима.

Вероятность существования единственного удовлетворяющего набора

Осталось доказать, что с необходимой нам вероятностью при условии выполнимости [math]\phi[/math] построенная формула [math]\phi_k[/math] имеет единственный набор, ее удовлетворяющий.

Внешние ссылки

Оригинальная статья 1986 года - Valiant, Leslie G., Vijay Vazirani NP is as easy as detecting unique solutions

Лекция Э.А.Гирша