Линейные операторы в нормированных пространствах — различия между версиями
Niko (обсуждение | вклад) |
Niko (обсуждение | вклад) |
||
Строка 84: | Строка 84: | ||
<tex>\mathcal{A}\colon \mathbb{R}^n \to \mathbb{R}^m, \overline x \in \mathbb{R}^n, \overline x = \sum \limits_{k=1}^n x_k \overline {e_k}, x_k= | <tex>\mathcal{A}\colon \mathbb{R}^n \to \mathbb{R}^m, \overline x \in \mathbb{R}^n, \overline x = \sum \limits_{k=1}^n x_k \overline {e_k}, x_k= | ||
− | \left \langle \overline x, \overline {e_k}\right \rangle</tex>. Тогда <tex>\mathcal{A} \left (\overline { | + | \left \langle \overline x, \overline {e_k}\right \rangle</tex>. Тогда <tex>\mathcal{A} \left (\overline {x} \right ) = \sum \limits_{k=1}^n x_k \mathcal{A} \left ( \overline {e_k} \right ) </tex> |
Таким образом, если оператор действует из конечномерного пространства, то он вполне определён по его значению на базисных точках. Если он действует в конечномерное пространство, <tex>\mathcal{A} \left ( \overline {e_k} \right ) = \sum \limits_{j=1}^m a_{jk} \overline{e_j}'</tex>. | Таким образом, если оператор действует из конечномерного пространства, то он вполне определён по его значению на базисных точках. Если он действует в конечномерное пространство, <tex>\mathcal{A} \left ( \overline {e_k} \right ) = \sum \limits_{j=1}^m a_{jk} \overline{e_j}'</tex>. | ||
Строка 90: | Строка 90: | ||
<tex>\mathcal{A} \left ( \overline x \right ) = \sum \limits_{k=1}^n \sum \limits_{j=1}^m \left ( a_{jk}x_k\overline{e_j}' \right ) = \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk} x_k \right ) \overline{e_j}' </tex> | <tex>\mathcal{A} \left ( \overline x \right ) = \sum \limits_{k=1}^n \sum \limits_{j=1}^m \left ( a_{jk}x_k\overline{e_j}' \right ) = \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk} x_k \right ) \overline{e_j}' </tex> | ||
− | <tex>\overline y = \mathcal{A} \overline x, y_j = \sum \limits_{k=1}^n a_{jk} x_k</tex> — здесь отчётливо видно правило умножения матриц. Отсюда понятно, почему часто устанавливают связь между линейными операторами и матрицами: <tex>\mathcal{A} \colon \mathbb{R}^n \to \mathbb{R}^m \longleftrightarrow \mathcal{A} = \left ( a_{jk} \right )</tex>, где <tex>j</tex> и <tex>k</tex> пробегают от <tex>n</tex> | + | {{Утверждение |
+ | |statement=<tex>\left \| \mathcal{A} \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2}</tex> | ||
+ | |proof= | ||
+ | <tex>\overline y = \mathcal{A} \overline x, y_j = \sum \limits_{k=1}^n a_{jk} x_k</tex> — здесь отчётливо видно правило умножения матриц. Отсюда понятно, почему часто устанавливают связь между линейными операторами и матрицами: <tex>\mathcal{A} \colon \mathbb{R}^n \to \mathbb{R}^m \longleftrightarrow \mathcal{A} = \left ( a_{jk} \right )</tex>, где <tex>j</tex> и <tex>k</tex> пробегают от <tex>1</tex> до <tex>n</tex> и <tex>m</tex> соответственно, а <tex>\mathcal{A} \overline x </tex> — результат действия л.о. <tex>\mathcal{A}</tex> на точку <tex>\overline x</tex> можно представить в виде произведения матрицы <tex>\mathcal{A}</tex> и столбца <tex>x</tex>. | ||
В <tex>\mathbb{R}^n</tex> сходимость покоординатная. <tex>\left | \sum \limits_{k=1}^m a_{jk} x_k \right | \le \sum \limits_{k=1}^m \left | a_{jk} \right | \left | x_k \right | \le \sqrt {\sum \limits_{k=1}^m \left | a_{jk} \right | ^ 2} \left \| \overline x \right \|</tex> (по неравенству Коши для сумм), таким образом, из <tex>\overline x \to 0</tex> неизбежно следует <tex>\sum \limits_{k=1}^m a_{jk} x_k \to 0</tex> | В <tex>\mathbb{R}^n</tex> сходимость покоординатная. <tex>\left | \sum \limits_{k=1}^m a_{jk} x_k \right | \le \sum \limits_{k=1}^m \left | a_{jk} \right | \left | x_k \right | \le \sqrt {\sum \limits_{k=1}^m \left | a_{jk} \right | ^ 2} \left \| \overline x \right \|</tex> (по неравенству Коши для сумм), таким образом, из <tex>\overline x \to 0</tex> неизбежно следует <tex>\sum \limits_{k=1}^m a_{jk} x_k \to 0</tex> | ||
Строка 102: | Строка 105: | ||
<tex> y^{2}_j \le \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \| ^ 2 </tex>. | <tex> y^{2}_j \le \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \| ^ 2 </tex>. | ||
− | <tex>\left \| \overline y \right \| ^ 2 \le \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \|</tex> | + | <tex>\left \| \overline y \right \| ^ 2 \le \sum \limits_{j=1}^m \left ( \sum \limits_{k=1}^n a_{jk}^2 \right ) \left \| \overline x \right \|^2</tex> |
<tex>\left \| \mathcal{A} \overline x \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2} \left \| \overline x \right \|</tex> | <tex>\left \| \mathcal{A} \overline x \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2} \left \| \overline x \right \|</tex> | ||
Таким образом, финальная оценка — <tex>\left \| \mathcal{A} \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2}</tex>. Но, в общем случае, эта оценка достаточно грубая. | Таким образом, финальная оценка — <tex>\left \| \mathcal{A} \right \| \le \sqrt{\sum \limits_{k=1}^n \sum \limits_{j=1}^m a_{jk}^2}</tex>. Но, в общем случае, эта оценка достаточно грубая. | ||
+ | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
'''Линейный функционал''' - линейный оператор вида <tex> \mathcal{A}: H \rightarrow \mathbb{R} </tex>, где <tex> H </tex> - гильбертово пространство. | '''Линейный функционал''' - линейный оператор вида <tex> \mathcal{A}: H \rightarrow \mathbb{R} </tex>, где <tex> H </tex> - гильбертово пространство. | ||
− | |||
}} | }} | ||
Строка 120: | Строка 123: | ||
# <tex>\left \| f \right \| = 1</tex> | # <tex>\left \| f \right \| = 1</tex> | ||
|proof= | |proof= | ||
− | Для <tex> x_0 = 0 </tex> подойдет любой линейный функционал, такой, что <tex> \| | + | Для <tex> x_0 = 0 </tex> подойдет любой линейный функционал, такой, что <tex> \|f\| = 1 </tex>, поэтому рассмотрим <tex> x_0 \ne 0 </tex>. |
− | Рассмотрим <tex>H</tex>-пространство(гильбертово). Фиксируем <tex> y \in H </tex> и определим <tex>f\left ( x \right )=\left (x,y\right)</tex>. f — линейный функционал. | + | Рассмотрим <tex>H</tex>-пространство(гильбертово). Фиксируем <tex> y \in H </tex> и определим <tex>f\left ( x \right )=\left (x,y\right)</tex>. <tex>f</tex> — линейный функционал. |
По неравенству Шварца, <tex> \left | f \left ( x \right ) \right | \le \left \| y \right \| \left \| x \right \|</tex>, следовательно, <tex> \left \| f \right \| \le \left \| y \right \|, x = \frac y {\left \| y \right \|}, \left \| x \right \| = 1. \left | f \left ( x \right ) \right | = \left \| y \right \|</tex>. | По неравенству Шварца, <tex> \left | f \left ( x \right ) \right | \le \left \| y \right \| \left \| x \right \|</tex>, следовательно, <tex> \left \| f \right \| \le \left \| y \right \|, x = \frac y {\left \| y \right \|}, \left \| x \right \| = 1. \left | f \left ( x \right ) \right | = \left \| y \right \|</tex>. |
Версия 22:54, 12 июня 2011
Определение: |
Пусть | , — нормированные пространства, . называется линейным оператором, если
Из того факта, что
, следует, что .
Определение: |
Л.о. называется ограниченным, если |
Определение: |
Л.о. непрерывен в точке | , если
Имеется тесная связь между ограниченностью и непрерывностью оператора:
Лемма: |
Непрерывность оператора в точке совпадает с его непрерывностью в точке . |
Доказательство: |
Пусть Значит, , и непрерывен в по определению. |
Теорема: |
Линейный оператор непрерывен тогда и только тогда, когда он ограничен. |
Доказательство: |
|
Определение: |
Нормой ограниченного оператора | является .
При , имеем
, таким образом,
Норма оператора
удовлетворяет трём стандартным аксиомам абстрактной нормы:Докажем свойство 3:
Утверждение: |
Рассмотрим , такой, что . |
, в частности,
Утверждение: |
Действия с операторами производятся стандартным образом, поточечно. Рассмотрим частный случай:
. Тогда
Таким образом, если оператор действует из конечномерного пространства, то он вполне определён по его значению на базисных точках. Если он действует в конечномерное пространство,
.
Утверждение: |
— здесь отчётливо видно правило умножения матриц. Отсюда понятно, почему часто устанавливают связь между линейными операторами и матрицами: , где и пробегают от до и соответственно, а — результат действия л.о. на точку можно представить в виде произведения матрицы и столбца . В сходимость покоординатная. (по неравенству Коши для сумм), таким образом, из неизбежно следуетИтак, линейный оператор, действующий из одного конечномерного пространства в другое, всегда непрерывен. Пользуясь классическими неравенствами типа Коши, легко оценить норму такого оператора:
.
Таким образом, финальная оценка — . Но, в общем случае, эта оценка достаточно грубая. |
Определение: |
Линейный функционал - линейный оператор вида | , где - гильбертово пространство.
Теорема: |
Для любого существует ограниченный линейный функционал , обладающий такими свойствами:
|
Доказательство: |
Для подойдет любой линейный функционал, такой, что , поэтому рассмотрим .Рассмотрим -пространство(гильбертово). Фиксируем и определим . — линейный функционал.По неравенству Шварца, , следовательно, .Рассмотрим . . Как раз это нам и нужно. |