689
правок
Изменения
Нет описания правки
...все корректно, <tex>\varphi' = \varphi</tex>.* ШТО --[[Участник:Sementry|Мейнстер Д.]] 21:24, 9 июня 2011 (UTC)** Лол. Если статья наполовину что, я заменил на то, что у меня в конспекте. Похоже на правду. ===Производная Фреше===Как-то плохо согласуются следующие вещи: Определение: <tex> \mathcal{F}(x + \Delta x) - \mathcal{F}(x) = \mathcal{A}(\Delta x) + \alpha(\Delta x) \left \| \Delta x \right \| </tex>где, внимание, утверждается, что: <tex>\mathcal{A}(x) = \mathcal{F}'(x)</tex> {{---}} '''производная Фреше''' отображения <tex>\mathcal{F}</tex> в точке <tex>x</tex> и далее утверждение: При <tex> X = Y = \mathbb{R} </tex> получаем определение дифференциала и производной функции одной переменной.Каким образом?? Может быть я чего-то не понимаю. Не путаются ли понятия производной и приращения(дифференциала)? * Нет, не путаются. Производная - функция, отображение, закон. В данном случае, оператор, линейный по <tex> \Delta x </tex> и произвольно зависящий от <tex> x </tex>. Дифференциал - элемент пространства образов, объект. Здесь дифференциалом является результат применения оператора к приращению. --[[Участник:Sementry|Мейнстер Д.]] 05:58, 13 июня 2011 (UTC)Потом это чудо: <tex> \varphi(x + \Delta x) - \varphi(x) = A(\Delta x) + \alpha(\Delta x) \| x \| </tex> <tex> \varphi(x) + \varphi(\Delta x) - \varphi(x) = \varphi(\Delta x) = A(\Delta x) + \alpha(\Delta x) \| x \| </tex> При <tex> \Delta x \to 0 </tex> , получаем <tex> \varphi(\Delta x) = A(\Delta x) </tex>, где A - производная, то есть <tex> \varphi' = \varphi </tex>я не про то, что тут небольшое не соответствие определению. Когда мы устремляем <tex> \Delta x \to 0 </tex>, как мы делаем вывод, что <tex> \varphi' = \varphi </tex> ? В лучшем случае это следствие верно только забита для одной точки: для нуля. (И действительно, раз это два линейых оператора, то в нуле они равны нулю). Кошмар в том, что у всех в конспектах одно и то же. У меня от этого когнитивный диссонанс. Он обоснован?* Да, хрень какая- предупреждайте хотьто, действительно. А как тогда это доказывается? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 2001:02, 13 июня 2011 (UTC)** Не знаю, к сожалению. На вскидку, мне непонятно, где вообще требуется в доказательстве равенство <tex> \varphi' = \varphi </tex>. А может там требуется лишь <tex> \| \varphi'\| = \|\varphi\| </tex>? --[[Участник:Dmitriy D.|Dmitriy D.]] 01:16, 13 июня 2011 (UTC)[[Участник:Dmitriy D.|Dmitriy D.]] 00:41, 13 июня 2011 (UTC) С <tex>\varphi' = \varphi</tex> действительно какое-то скользкое место, более того, моя интуиция подсказывает, что в этом случае <tex>\varphi</tex> - что-то, похожее на экспоненту, а мы, когда доказывали существование соответствующего линейного оператора, брали за основу линейное скалярное произведение. Возможно, действительно имеется в виду <tex> \| \varphi'\| = \|\varphi\| </tex>. --[[Участник:Sementry|Мейнстер Д.]] 05:58, 13 июня 2011 (UTC) И, да, пожалуйста, подписывайтесь. Мы же тут не капчу двачуем, а занимаемся более-менее серьезным делом, которое нужно всем или почти всем. --[[Участник:Sementry|Мейнстер Д.]] 05:3358, 5 13 июня 2011 (UTC)