Равномерная сходимость функционального ряда — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Признак Абеля-Дирихле)
Строка 110: Строка 110:
 
{{Теорема
 
{{Теорема
 
|author=Абель-Дирихле
 
|author=Абель-Дирихле
|statement=Для равномерной сходимости на множестве <tex>E</tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) b_n(x)</tex> , <tex> a_n:X \to C</tex> и <tex> b_n:X \to R</tex> достаточно, чтобы выполнялась пара условий:
+
|statement=Для равномерной сходимости на множестве <tex>E</tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) b_n(x)</tex> , <tex> a_n:E \to \mathbb C</tex> и <tex> b_n:E \to \mathbb R</tex> достаточно, чтобы выполнялась пара условий:
  
 
1)Частичные суммы <tex> S_k(x)= \sum\limits_{n = 1}^k a_n(x) </tex>  ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) </tex> равномерно ограничены на <tex>E</tex>;
 
1)Частичные суммы <tex> S_k(x)= \sum\limits_{n = 1}^k a_n(x) </tex>  ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) </tex> равномерно ограничены на <tex>E</tex>;

Версия 22:31, 13 июня 2011

<< >>

Поточечная сходимость

То, как была определена сумма функционального ряда, не учитывает то, что функция — закон соответствия, который каждому [math]x \in E[/math] сопоставляет некоторое число. При этом, все [math]x[/math] фигурировали изолированно.

Пусть на [math]E[/math] [math]f_n[/math] обладает свойством [math]P[/math](например, непрерывность на [math]E[/math]). И пусть для любого [math] x \in E [/math] есть предел соответствующей числовой последовательности. Возникает вопрос: "Будет ли [math]f = \lim\limits_{n \rightarrow \infty} f_n[/math] обладать свойством [math]P[/math]?"

Приведем пример, показывающий, что если требовать лишь поточечной сходимости, то для [math] f [/math] свойство [math]P[/math] может отсутствовать.

[math]f_n = \begin{cases} -nx + 1, & x \in [0; \frac1n] \\ 0, & x \in (\frac1n; 1]\\ \end{cases}[/math]

Picture1.png

Все [math]f_n[/math] непрерывны на [math][0; 1][/math]. [math]f_n(0) = 1 \to 1[/math], [math]f(0) = 1[/math].

[math]0 \lt x \leq 1[/math]: [math]\frac1n \to 0[/math]. Тогда, начиная с некоторого [math]N[/math], все [math]\frac1N \lt x \Rightarrow f_n(x) = 0[/math]

Тогда [math]f[/math] будет разрывна в нуле, свойство непрерывности не сохранилось.

Равномерная сходимость

Возникает вопрос: "Что ещё надо потребовать от поточечной сходимости, чтобы в пределе [math]P[/math] сохранилось?"

Классическое требование: равномерная сходимость.


Определение:
[math]f_1, f_2, \ldots[/math] равномерно сходится к [math]f(x)[/math], если

[math]\forall \varepsilon\ \gt 0\ \exists N\ \forall n \gt N\ \forall x \in E : |f_n(x) - f(x)| \lt \varepsilon[/math]

Пишут, что [math]f_n \rightrightarrows f[/math].


Определение:
Пусть на [math]E[/math] задан функциональный ряд [math]\sum\limits_{n = 1}^\infty f_n[/math]. Тогда он равномерно сходится к

[math]f = \sum f_n[/math], если

[math]\forall\varepsilon\ \gt 0\ \exists N\ \forall n \gt N\ \forall x \in E : |S_n(x) - f(x)| \lt \varepsilon[/math]


Далее всё будем писать на языке функциональных рядов, так как их наиболее удобно использовать в математическом анализе, и вообще это очень круто и популярно.

Критерий Коши равномерной сходимости

Теорема (Критерий Коши равномерной сходимости):
Ряд равномерно сходится на [math]E[/math] [math]\iff[/math] [math]\forall\varepsilon\ \gt 0\ \exists N\ \forall m, n : m \geq n \gt N\ \forall x \in E : \left|\sum\limits_{k = n}^m f_k(x)\right| \lt \varepsilon[/math]
Доказательство:
[math]\triangleright[/math]

[math]\Longrightarrow[/math] Пусть ряд равномерно сходится.

[math]\sum\limits_{k = n}^m f_k = S_m - S_{n - 1}[/math]

[math]\left|\sum\limits_{k = n}^m f_k \right| = |(S_m - S) + (S - S_{n - 1})|[/math], где [math]S[/math] — сумма ряда. Тогда

[math]\left|\sum\limits_{k = n}^m f_k(x)\right| \leq |S_m - S| + |S_{n - 1} - S|[/math]

По определению равномерной сходимости, [math]\forall \varepsilon\ \exists N\ \forall p \gt N\ \forall x \in E : |S_p(x) - S(x)| \lt \varepsilon[/math].

[math]m, n - 1 \gt N [/math]

В силу предыдущего неравенства, [math]\forall x \in E : \left|\sum\limits_{k = n}^m f_k(x)\right| \leq 2\varepsilon[/math], то есть, выполняется условие критерия Коши.


[math]\Longleftarrow[/math] Пусть выполняется условие критерия Коши.

[math]\forall x \in E[/math] для [math]\sum\limits_{n = 1}^\infty f_n(x)[/math] выполняется критерий Коши сходимости числовых рядов. Значит, этот ряд сходится. На всем [math]E[/math] определена его сумма. Осталось установить равномерную сходимость ряда.

По условию критерия Коши, [math]\forall m \geq n \gt N\ \forall x \in E : \left|\sum\limits_{k = n}^m f_k(x) \right| \leq \varepsilon[/math]

Как и в первой половине доказательства, [math]|S_m(x) - S_{n - 1}(x)| \leq \varepsilon[/math], но [math]S_p(x) \to S(x)[/math]. В неравенстве с [math]\varepsilon[/math] можно подставлять любой фиксированный [math]x[/math]. Устремим [math]m \to \infty[/math]: [math]\forall n \gt N\ \forall x \in E : |S_n(x) - S(x)| \leq \varepsilon[/math]

Значит, определение равномерной сходимости проверено.
[math]\triangleleft[/math]

Признак Вейерштрасса

Существует простой признак для проверки равномерной сходимости (признак Вейерштрасса)

Можно рассматривать [math]\sum\limits_{n = 1}^\infty |f_n|[/math] и при этом сохраняется терминология числовых рядов, связанная с абсолютной и условной сходимостью.

Как и в рядах, абсолютная сходимость сильнее сходимости: из абсолютной сходимости вытекает сходимость.

Теорема (Вейерштрасс):
[math]\sum\limits_{n = 1}^\infty f_n[/math], [math]\forall n \in \mathbb{N} [/math] , [math] \forall x \in E : |f_n(x)| \leq a_n[/math], [math]\sum\limits_{n = 1}^\infty a_n[/math] — сходится. Тогда [math]\sum\limits_{n = 1}^\infty f_n[/math] равномерно сходится на [math]E[/math].
Доказательство:
[math]\triangleright[/math]

Применим критерий Коши:

[math]\left|\sum\limits_{k = n}^m f_k(x) \right|[/math] [math]\leq \sum\limits_{k = n}^m |f_k(x)|[/math] [math]\leq \sum\limits_{k = n}^m a_k[/math]

[math]\sum\limits_{k = n}^m a_k \lt +\infty \Rightarrow \forall\varepsilon\ \gt 0\ \exists N\ \forall m \geq n \gt N : \sum\limits_{k = n}^m a_k \lt \varepsilon[/math]

Сопоставляя с предыдущим неравенством, которое верно [math]\forall x[/math],

[math]\left|\sum\limits_{k = n}^m f_k(x)\right| \lt \varepsilon[/math]. Тогда, по критерию Коши, ряд равномерно сходится.
[math]\triangleleft[/math]

Признак Абеля-Дирихле

Теорема (Абель-Дирихле):
Для равномерной сходимости на множестве [math]E[/math] ряда [math]\sum\limits_{n = 1}^\infty a_n(x) b_n(x)[/math] , [math] a_n:E \to \mathbb C[/math] и [math] b_n:E \to \mathbb R[/math] достаточно, чтобы выполнялась пара условий:

1)Частичные суммы [math] S_k(x)= \sum\limits_{n = 1}^k a_n(x) [/math] ряда [math]\sum\limits_{n = 1}^\infty a_n(x) [/math] равномерно ограничены на [math]E[/math];

2)Последовательность функций [math]b_n(x)[/math] монотонна и сходится к нулю на [math]E[/math].
Доказательство:
[math]\triangleright[/math]

Монотонность последовательности [math]b_n(x)[/math] позволяет при каждом [math]x \in E[/math] записать оценку:

[math] |\sum\limits_{k = n}^m a_k(x) b_k(x)| \leq 4 max |A_k(x)| * max( |b_n(x)|, |b_m(x)| )[/math]

где [math] n - 1 \leq k \leq m [/math] и в качестве [math] A_k(x)[/math] возьмем [math] S_k(x) - S_{n-1}(x) [/math] .

Если выполнена пара условий 1) и 2), то с одной стороны существует такая постоянная [math]M[/math],что [math]|A_k(x)| \leq M[/math] при любом [math] k \in N [/math] и любом [math]x \in E[/math], а с другой стороны, какого бы ни было число [math]\varepsilon \gt 0 [/math], при всех достаточно больших значениях [math]m[/math] и [math]n[/math] и любом [math] x\in E[/math] будет выполнено неравенство [math] max( |b_n(x)|, |b_m(x)| ) \lt \frac{\varepsilon}{4M} [/math]. Значит, что при всех достаточно больших значениях [math]m[/math] и [math]n[/math] и любом [math] x \in E [/math] будет [math]|\sum\limits_{k = n}^m a_k(x) b_k(x)| \lt \varepsilon [/math], т.е. для рассматриваемого ряда выполнен критерий Коши равномерной сходимости.
[math]\triangleleft[/math]

<< >>