Равномерная сходимость функционального ряда — различия между версиями
Niko (обсуждение | вклад) (→Признак Абеля-Дирихле) |
Niko (обсуждение | вклад) м |
||
| Строка 110: | Строка 110: | ||
{{Теорема | {{Теорема | ||
|author=Абель-Дирихле | |author=Абель-Дирихле | ||
| − | |statement=Для равномерной сходимости на множестве <tex>E</tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) b_n(x)</tex> , <tex> a_n:E \to \mathbb C</tex> и <tex> b_n:E \to \mathbb R</tex> достаточно, чтобы выполнялась пара условий: | + | |statement=Для равномерной сходимости на множестве <tex>E</tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) b_n(x)</tex> , <tex> a_n:E \to \mathbb C</tex> и <tex> b_n:E \to \mathbb R</tex> достаточно, чтобы выполнялась пара условий <tex> \forall x \in E </tex>: |
1)Частичные суммы <tex> S_k(x)= \sum\limits_{n = 1}^k a_n(x) </tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) </tex> равномерно ограничены на <tex>E</tex>; | 1)Частичные суммы <tex> S_k(x)= \sum\limits_{n = 1}^k a_n(x) </tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) </tex> равномерно ограничены на <tex>E</tex>; | ||
Версия 22:38, 13 июня 2011
Содержание
Поточечная сходимость
То, как была определена сумма функционального ряда, не учитывает то, что функция — закон соответствия, который каждому сопоставляет некоторое число. При этом, все фигурировали изолированно.
Пусть на обладает свойством (например, непрерывность на ). И пусть для любого есть предел соответствующей числовой последовательности. Возникает вопрос: "Будет ли обладать свойством ?"
Приведем пример, показывающий, что если требовать лишь поточечной сходимости, то для свойство может отсутствовать.
Все непрерывны на . , .
: . Тогда, начиная с некоторого , все
Тогда будет разрывна в нуле, свойство непрерывности не сохранилось.
Равномерная сходимость
Возникает вопрос: "Что ещё надо потребовать от поточечной сходимости, чтобы в пределе сохранилось?"
Классическое требование: равномерная сходимость.
| Определение: |
| равномерно сходится к , если
Пишут, что . |
| Определение: |
| Пусть на задан функциональный ряд . Тогда он равномерно сходится к
, если |
Далее всё будем писать на языке функциональных рядов, так как их наиболее удобно использовать в
математическом анализе, и вообще это очень круто и популярно.
Критерий Коши равномерной сходимости
| Теорема (Критерий Коши равномерной сходимости): |
Ряд равномерно сходится на |
| Доказательство: |
|
Пусть ряд равномерно сходится.
, где — сумма ряда. Тогда
По определению равномерной сходимости, .
В силу предыдущего неравенства, , то есть, выполняется условие критерия Коши.
для выполняется критерий Коши сходимости числовых рядов. Значит, этот ряд сходится. На всем определена его сумма. Осталось установить равномерную сходимость ряда. По условию критерия Коши, Как и в первой половине доказательства, , но . В неравенстве с можно подставлять любой фиксированный . Устремим : Значит, определение равномерной сходимости проверено. |
Признак Вейерштрасса
Существует простой признак для проверки равномерной сходимости (признак Вейерштрасса)
Можно рассматривать и при этом сохраняется терминология числовых рядов, связанная с абсолютной и условной сходимостью.
Как и в рядах, абсолютная сходимость сильнее сходимости: из абсолютной сходимости вытекает сходимость.
| Теорема (Вейерштрасс): |
, , , — сходится.
Тогда равномерно сходится на . |
| Доказательство: |
|
Применим критерий Коши:
Сопоставляя с предыдущим неравенством, которое верно , . Тогда, по критерию Коши, ряд равномерно сходится. |
Признак Абеля-Дирихле
| Теорема (Абель-Дирихле): |
Для равномерной сходимости на множестве ряда , и достаточно, чтобы выполнялась пара условий :
1)Частичные суммы ряда равномерно ограничены на ; 2)Последовательность функций монотонна и сходится к нулю на . |
| Доказательство: |
|
Монотонность последовательности позволяет при каждом записать оценку:
где и в качестве возьмем . Если выполнена пара условий 1) и 2), то с одной стороны существует такая постоянная ,что при любом и любом , а с другой стороны, какого бы ни было число , при всех достаточно больших значениях и и любом будет выполнено неравенство . Значит, что при всех достаточно больших значениях и и любом будет , т.е. для рассматриваемого ряда выполнен критерий Коши равномерной сходимости. |