Многомерное дерево Фенвика — различия между версиями
(→Пример задачи для двумерного случая) |
Helm (обсуждение | вклад) (→Пример задачи для двумерного случая) |
||
Строка 42: | Строка 42: | ||
</code> | </code> | ||
− | Чтобы посчитать значение функции для прямоугольника <tex>(x_1, y_1), (x_2, y_2)</tex> нужно воспользоваться формулой включения-исключения. Например для суммы: <tex>s = sum(x_2,y_2)-sum(x_2,y_1)-sum(x_1,y_2)+sum(x_1,y_1)</tex> | + | Чтобы посчитать значение функции для прямоугольника <tex>(x_1, y_1), (x_2, y_2)</tex> нужно воспользоваться формулой включения-исключения. Например для суммы: <tex>s = sum(x_2,y_2)-sum(x_2,y_1 - 1)-sum(x_1 - 1,y_2)+sum(x_1 - 1,y_1 - 1)</tex> |
== Полезные ссылки: == | == Полезные ссылки: == |
Версия 09:09, 15 июня 2011
Определение: |
Многомерное дерево Фенвика - структура данных, требующая памяти и позволяющая эффективно (за )
|
Пример задачи для двумерного случая
Пусть имеем набор точек на плоскости с неотрицательными координатами. Определены 3 операции:
- добавить точку в ;
- удалить точку из ;
- посчитать количество точек в прямоугольнике ;
m - количество точек, maxX - максимальная x координата, maxY - максимальная y координата. тогда дерево строится за
, а запросы выполняются заДобавляя точку вызовем
, а удаляя . Таким образом запрос дает количество точек в прямоугольнике.Пример реализации для двумерного случая:
vector <vector <int> > t; int n, m; int sum (int x, int y) { int result = 0; for (int i = x; i >= 0; i = (i & (i+1)) - 1) for (int j = y; j >= 0; j = (j & (j+1)) - 1) result += t[i][j]; return result; } void inc (int x, int y, int delta) { for (int i = x; i < n; i = (i | (i+1))) for (int j = y; j < m; j = (j | (j+1))) t[i][j] += delta; }
Чтобы посчитать значение функции для прямоугольника
нужно воспользоваться формулой включения-исключения. Например для суммы:Полезные ссылки:
Wikipedia: Fenwick tree
e-maxx.ru: Дерево Фенвика
TopCoder: Binary Indexed Trees