Многомерное дерево отрезков — различия между версиями
VVolochay (обсуждение | вклад) |
VVolochay (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | Дерево отрезков можно обобщить в многомерный случай для решения таких задач, как поиск суммы на прямоугольнике(или гиперпрямоугольной области). | + | [[Дерево отрезков. Построение|Дерево отрезков]] можно обобщить в многомерный случай для решения таких задач, как поиск суммы на прямоугольнике(или гиперпрямоугольной области). |
− | |||
{{Задача | {{Задача | ||
|definition= | |definition= | ||
Рассматривается задача регионального поиска. Задано множество точек в <tex>p-</tex>мерном евклидовом пространстве. Образцом для поиска является гиперпрямоугольная область.Найти сумму/минимум/максимум. | Рассматривается задача регионального поиска. Задано множество точек в <tex>p-</tex>мерном евклидовом пространстве. Образцом для поиска является гиперпрямоугольная область.Найти сумму/минимум/максимум. | ||
}} | }} | ||
+ | |||
==Построение== | ==Построение== | ||
Пусть задано <tex>p</tex>-мерное пространство с координатными осями <tex>x_1, x_2, x_3...x_p</tex>.Т.к. при построении одномерного дерева, индексы массива разбиваются на отрезки, тогда при построении многомерного дерева координаты будут обрабатываться сначала по <tex>x_1 </tex>, затем по <tex>x_2</tex> и так далее...Далее дерево строится рекурсивно: далее координаты по <tex>x_1</tex> обрабатываем по координатам <tex>x_2</tex>, <tex>x_3</tex>(по всем возможным координатам)и далее по аналогии...То есть получается, что основная идея построения многомерного дерева отрезков - вкладывание деревьев отрезка друг в друга. | Пусть задано <tex>p</tex>-мерное пространство с координатными осями <tex>x_1, x_2, x_3...x_p</tex>.Т.к. при построении одномерного дерева, индексы массива разбиваются на отрезки, тогда при построении многомерного дерева координаты будут обрабатываться сначала по <tex>x_1 </tex>, затем по <tex>x_2</tex> и так далее...Далее дерево строится рекурсивно: далее координаты по <tex>x_1</tex> обрабатываем по координатам <tex>x_2</tex>, <tex>x_3</tex>(по всем возможным координатам)и далее по аналогии...То есть получается, что основная идея построения многомерного дерева отрезков - вкладывание деревьев отрезка друг в друга. | ||
Строка 22: | Строка 22: | ||
Ответ на запрос в таком дереве будет производиться так же,как и построение: сначала по координате <tex>x_1</tex>, затем, когда дошли до какой-либо вершины по первой координате, вызвать запрос от этого же дерева по <tex>x_2</tex> и так далее.Получается, что для <tex>n-</tex>мерного дерева запрос выполняется за <tex>O(log (s_{x_1})* log (s_{x_2})...log (s_{x_n})</tex> (для рассмотренного двумерного дерева будет <tex>log (n) * log (m) </tex> ) | Ответ на запрос в таком дереве будет производиться так же,как и построение: сначала по координате <tex>x_1</tex>, затем, когда дошли до какой-либо вершины по первой координате, вызвать запрос от этого же дерева по <tex>x_2</tex> и так далее.Получается, что для <tex>n-</tex>мерного дерева запрос выполняется за <tex>O(log (s_{x_1})* log (s_{x_2})...log (s_{x_n})</tex> (для рассмотренного двумерного дерева будет <tex>log (n) * log (m) </tex> ) | ||
+ | |||
+ | ==Источники== | ||
+ | e-maxx.ru: [http://e-maxx.ru/algo/segment_tree Дерево отрезков] <br/> | ||
+ | F. P. Preparata, M.I. Shamos - Вычислительная геометрия [http://pogorskiy.narod.ru/rectq.htm Главы о региональном поиске] | ||
+ | |||
+ | ==Смотри также== | ||
+ | [[Дерево отрезков. Построение]] | ||
+ | [[Сжатое многомерное дерево отрезков]] | ||
+ | [[Многомерное дерево Фенвика]] |
Версия 09:26, 15 июня 2011
Дерево отрезков можно обобщить в многомерный случай для решения таких задач, как поиск суммы на прямоугольнике(или гиперпрямоугольной области).
Задача: |
Рассматривается задача регионального поиска. Задано множество точек в | мерном евклидовом пространстве. Образцом для поиска является гиперпрямоугольная область.Найти сумму/минимум/максимум.
Содержание
Построение
Пусть задано
-мерное пространство с координатными осями .Т.к. при построении одномерного дерева, индексы массива разбиваются на отрезки, тогда при построении многомерного дерева координаты будут обрабатываться сначала по , затем по и так далее...Далее дерево строится рекурсивно: далее координаты по обрабатываем по координатам , (по всем возможным координатам)и далее по аналогии...То есть получается, что основная идея построения многомерного дерева отрезков - вкладывание деревьев отрезка друг в друга.Пример задачи, в которой удобно использовать многомерное дерево отрезков
Пример двумерного дерева
Рассмотрим процесс построения предельного случая при
. Пусть задан массив элементов размера .Упорядочим массив по первой координате и построим на нем дерево отрезков.После этого для каждого узла дерева строим еще одно дерево отрезков по координате , которые находятся на том же отрезке.К примеру,двумерное дерево размером
Анализ и оценка структуры
Строится такое дерево за линейное время. Структура использует
памяти, и отвечает на запрос за , где -размерность дерева.Ответ на запрос в таком дереве будет производиться так же,как и построение: сначала по координате
, затем, когда дошли до какой-либо вершины по первой координате, вызвать запрос от этого же дерева по и так далее.Получается, что для мерного дерева запрос выполняется за (для рассмотренного двумерного дерева будет )Источники
e-maxx.ru: Дерево отрезков
F. P. Preparata, M.I. Shamos - Вычислительная геометрия Главы о региональном поиске
Смотри также
Дерево отрезков. Построение Сжатое многомерное дерево отрезков Многомерное дерево Фенвика