Класс IP — различия между версиями
(Новая страница: «===Определение=== Классом <tex>IP[f(n)]</tex> (IP = interactive proof) называется множество языков, расопознава…») |
м (rollbackEdits.php mass rollback) |
||
(не показано 58 промежуточных версий 3 участников) | |||
Строка 1: | Строка 1: | ||
− | + | ==Определение== | |
− | + | '''Интерактивный протокол доказательства''' - абстрактная машина, модулирующая вычисление как передачу сообщений между двумя сущностями: <tex>P</tex> - prover и <tex>V</tex> - verifier. В ходе данного взаимодействия <tex>P</tex> и <tex>V</tex> определяют, принадлежит ли данное слово <tex>x</tex> языку. <tex>P</tex> имеет неограниченную вычислительную мощность и пытается доказать, что <tex>x</tex> принадлежит языку. <tex>V</tex> - [[Вероятностная машина Тьюринга|вероятностная машина Тьюринга]], | |
− | работающая за полином и проверяющая информацию от <tex>P</tex> | + | работающая за полином и проверяющая информацию от <tex>P</tex>. При этом <tex>P</tex> не видит вероятностную ленту <tex>V</tex>. <tex>V</tex> хочет допустить слово тогда и только тогда, когда оно принадлежит языку. |
− | + | ==Определение== | |
+ | Классом '''IP'''[f(n)] ('''IP''' = interactive proof) называется множество языков, распознаваемых с помощью интерактивного протокола доказательства. При этом: | ||
− | + | 1) <tex>x \in L \Rightarrow \exists P : Pr(V^{P}(x)=1)\ge \frac{2}{3} \ </tex> , где <tex>Pr(V^{P}(x)=1)</tex> - вероятность того, что <tex>P</tex> убедит <tex>V</tex> допуститить <tex>x</tex> | |
+ | |||
+ | 2) <tex>\ x \notin L \Rightarrow \forall Q : Pr(V^{Q}(x)=1)\le \frac{1}{3} </tex> | ||
3) количество обращений к <tex>P \le f(n) </tex> | 3) количество обращений к <tex>P \le f(n) </tex> | ||
+ | |||
+ | ==Теорема== | ||
+ | '''NP''' ⊂ '''IP'''[1], '''BPP''' ⊂ '''IP'''[0] | ||
+ | |||
+ | ==Доказательство== | ||
+ | Первое утверждение верно, так как определить, принадлежит ли слово языку, можно за один запрос. <tex>V</tex> посылает запрос к <tex>P</tex> и в ответ получает сертификат, если слово принадлежит языку. Если слово не принадлежит языку, то сертификата не существует, а значит <tex>P</tex> не может его послать. <tex>P</tex> хочет убедить <tex>V</tex> в том, что слово принадлежит языку, поэтому пришлет сертификат в случае его существования. | ||
+ | |||
+ | Второе утверждение очевидно, так как для проверки принадлежности слова к языку из [[Сложностный класс BPP|'''BPP''']] хватает вычислительной мощности <tex>V</tex>, и запросов к <tex>P</tex> делать не нужно. | ||
+ | |||
+ | ==Замечание== | ||
+ | На самом деле '''NP''' ⊂ '''dIP'''[1], где '''dIP'''[1] - аналог '''IP'''[1], за исключением того, что <tex>V</tex> из '''dIP'''[1] - детерминированная машина Тьюринга. | ||
+ | |||
+ | ==Определение== | ||
+ | '''IP''' = '''IP'''[poly] - класс языков, распознаваемых с помощью интерактивного протокола доказательства с полиномиальным числом запросов от <tex>V</tex> к <tex>P</tex>. |
Текущая версия на 19:17, 4 сентября 2022
Определение
Интерактивный протокол доказательства - абстрактная машина, модулирующая вычисление как передачу сообщений между двумя сущностями: вероятностная машина Тьюринга, работающая за полином и проверяющая информацию от . При этом не видит вероятностную ленту . хочет допустить слово тогда и только тогда, когда оно принадлежит языку.
- prover и - verifier. В ходе данного взаимодействия и определяют, принадлежит ли данное слово языку. имеет неограниченную вычислительную мощность и пытается доказать, что принадлежит языку. -Определение
Классом IP[f(n)] (IP = interactive proof) называется множество языков, распознаваемых с помощью интерактивного протокола доказательства. При этом:
1)
, где - вероятность того, что убедит допуститить2)
3) количество обращений к
Теорема
NP ⊂ IP[1], BPP ⊂ IP[0]
Доказательство
Первое утверждение верно, так как определить, принадлежит ли слово языку, можно за один запрос.
посылает запрос к и в ответ получает сертификат, если слово принадлежит языку. Если слово не принадлежит языку, то сертификата не существует, а значит не может его послать. хочет убедить в том, что слово принадлежит языку, поэтому пришлет сертификат в случае его существования.Второе утверждение очевидно, так как для проверки принадлежности слова к языку из BPP хватает вычислительной мощности , и запросов к делать не нужно.
Замечание
На самом деле NP ⊂ dIP[1], где dIP[1] - аналог IP[1], за исключением того, что
из dIP[1] - детерминированная машина Тьюринга.Определение
IP = IP[poly] - класс языков, распознаваемых с помощью интерактивного протокола доказательства с полиномиальным числом запросов от
к .