Мера, порождённая внешней мерой — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
| (не показано 8 промежуточных версий 5 участников) | |||
| Строка 8: | Строка 8: | ||
Так как <tex> B = (B \cap A) \cup (B \cap \overline{A}) </tex>, то, по полуаддитивности внешней меры, <tex> \mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap \overline{A}) </tex> всегда, поэтому, когда мы будем проверять, что одно множество хорошо разбивает другое, достаточно проверять неравенство <tex> \mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap \overline{A}) </tex>. Оно всегда верно, если <tex> \mu^*(B) = +\infty </tex>, поэтому далее будем проверять его только для случая <tex> \mu^*(B) < +\infty </tex>. | Так как <tex> B = (B \cap A) \cup (B \cap \overline{A}) </tex>, то, по полуаддитивности внешней меры, <tex> \mu^*(B) \le \mu^*(B \cap A) + \mu^*(B \cap \overline{A}) </tex> всегда, поэтому, когда мы будем проверять, что одно множество хорошо разбивает другое, достаточно проверять неравенство <tex> \mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap \overline{A}) </tex>. Оно всегда верно, если <tex> \mu^*(B) = +\infty </tex>, поэтому далее будем проверять его только для случая <tex> \mu^*(B) < +\infty </tex>. | ||
| − | + | {{Определение | |
| + | |definition=Множество <tex>A \subset X</tex> называется '''μ*-измеримым''', если оно '''хорошо разбивает''' всякое множество <tex>E \subset X</tex>. | ||
| + | }} | ||
| + | |||
| + | Выделим в <tex> X </tex> класс <tex> \mu^*</tex>-измеримых множеств <tex> \mathcal{A} </tex>. | ||
| + | |||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
| Строка 32: | Строка 37: | ||
#: Значит, <tex> A \cap B </tex> тоже хорошо разбивает любое подмножество <tex> X </tex> и принадлежит <tex> \mathcal A </tex>. Мы доказали, что <tex> \mathcal A </tex> - алгебра. | #: Значит, <tex> A \cap B </tex> тоже хорошо разбивает любое подмножество <tex> X </tex> и принадлежит <tex> \mathcal A </tex>. Мы доказали, что <tex> \mathcal A </tex> - алгебра. | ||
| − | Пусть <tex> A \in \mathcal{A}, A = A_1 \cup A_2 </tex>, проверим, что <tex> \mu^* </tex> конечно-аддитивна. | + | Пусть <tex> A \in \mathcal{A}, A = A_1 \cup A_2 </tex> и <tex>A_1 \cap A_2 = \varnothing</tex>, проверим, что <tex> \mu^* </tex> конечно-аддитивна. |
<tex> \mu^*(A) = \mu^*(A_1 \cup A_2) = \mu^*((A_1 \cup A_2) \cap A_1) + \mu^*((A_1 \cup A_2) \cap \overline{A_1}) = \mu^*(A_1) + \mu^*(A_2) </tex>. | <tex> \mu^*(A) = \mu^*(A_1 \cup A_2) = \mu^*((A_1 \cup A_2) \cap A_1) + \mu^*((A_1 \cup A_2) \cap \overline{A_1}) = \mu^*(A_1) + \mu^*(A_2) </tex>. | ||
Текущая версия на 19:12, 4 сентября 2022
| Определение: |
| Пусть есть множество и внешняя мера на нем, и множества являются подмножествами . Множество хорошо разбивает множество , если . |
Так как , то, по полуаддитивности внешней меры, всегда, поэтому, когда мы будем проверять, что одно множество хорошо разбивает другое, достаточно проверять неравенство . Оно всегда верно, если , поэтому далее будем проверять его только для случая .
| Определение: |
| Множество называется μ*-измеримым, если оно хорошо разбивает всякое множество . |
Выделим в класс -измеримых множеств .
| Теорема: |
1) — -алгебра множеств. 2) — мера на . |
| Доказательство: |
|
Доказательство разбиваем на 2 этапа. На первом этапе мы докажем, что - алгебра, а конечно-аддитивна на этой алгебре. На втором этапе — что — -алгебра, а является -аддитивной на ней. 1. Сначала проверим аксиомы алгебры:
Пусть и , проверим, что конечно-аддитивна. . Мы сделали проверку для двух множеств, дальше можно доказать требуемое для любого конечного числа множеств по индукции. 2. Из первого пункта мы уже знаем, что, , если дизъюнктны, то . Пусть . Полагая , для доказательства того, что является -алгеброй, нам нужно установить неравенство: . , поэтому . . При , получаем . Но , поэтому , и . Требуемое неравенство доказано, . Подставим в вместо , получим . Но по -аддитивности внешней меры, , поэтому , и - -аддитивная мера на . Дальше еще две строчки, но, вроде бы, они не нужны. |