Сложностные классы. Вычисления с оракулом — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 8 промежуточных версий 4 участников) | |||
Строка 3: | Строка 3: | ||
Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы [[Класс P|P]], [[Классы NP и Σ₁|NP]] и т.д. | Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы [[Класс P|P]], [[Классы NP и Σ₁|NP]] и т.д. | ||
+ | Сложность алгоритма - величина, характеризующая длину описания алгоритма или громоздкость процессов его применения к исходным данным. | ||
+ | |||
+ | В основных понятиях теории сложности используются такие величины как время работы и объем затрачиваемой памяти. | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Строка 25: | Строка 28: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | <tex>\mathrm{TS}(f,g)</tex> — класс языков <tex>L</tex>, для которых существует детерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{T}(p,x) = O(f(n))</tex> и <tex>\mathrm{S}(p,x) = O(g(n)), где <tex>x</tex> — длина входа. | + | <tex>\mathrm{TS}(f,g)</tex> — класс языков <tex>L</tex>, для которых существует детерминированная программа <tex>p</tex> такая, что <tex>L(p)=L</tex> и для любого <tex>x</tex> из <tex>L</tex> выполнено <tex>\mathrm{T}(p,x) = O(f(n))</tex> и <tex>\mathrm{S}(p,x) = O(g(n))</tex>, где <tex>x</tex> — длина входа. |
}} | }} | ||
== Вычисление с оракулом == | == Вычисление с оракулом == | ||
+ | В теории вычислений и теории сложности Машиной с оракулом называют абстрактную машину, предназначенную для решения какой-либо проблемы разрешимости. Такая машина может быть представлена как машина Тьюринга, дополненная оракулом с неизвестным внутренним устройством. Постулируется, что оракул способен решить определенные проблемы разрешимости за один такт машины Тьюринга. Машина Тьюринга взаимодействует с оракулом путем записи на свою ленту входных данных для оракула и затем запуском оракула на исполнение. За один шаг оракул вычисляет функцию, стирает входные данные и пишет выходные данные на ленту. Иногда машина Тьюринга описывается как имеющая две ленты, одна предназначена для входных данных оракула, другая — для выходных. | ||
{{Определение | {{Определение | ||
|definition= | |definition= |
Текущая версия на 19:10, 4 сентября 2022
В начале 1960-х годов, в связи с началом широкого использования вычислительной техники для решения практических задач, возник вопрос о границах практической применимости данного алгоритма решения задачи в смысле ограничений на её размерность. Какие задачи могут быть решены на ЭВМ за реальное время?
Ответ на этот вопрос был дан в работах Кобхэма (Alan Cobham, 1964) и Эдмондса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы P, NP и т.д.
Сложность алгоритма - величина, характеризующая длину описания алгоритма или громоздкость процессов его применения к исходным данным.
В основных понятиях теории сложности используются такие величины как время работы и объем затрачиваемой памяти.
Определение: |
— время работы программы р на входе х. |
Определение: |
— объем памяти, требуемый программе р для выполнения на входе х. |
Введём понятия и , аналогичным образом определяются классы и (префикс соответствует детерминизму, а — недетерминизму). Через них будет дано определение многим сложностным классам.
Определение: |
— класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено (здесь — длина ). |
Определение: |
— класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено (здесь — длина ). |
Определение: |
— класс языков , для которых существует детерминированная программа такая, что и для любого из выполнено и , где — длина входа. |
Вычисление с оракулом
В теории вычислений и теории сложности Машиной с оракулом называют абстрактную машину, предназначенную для решения какой-либо проблемы разрешимости. Такая машина может быть представлена как машина Тьюринга, дополненная оракулом с неизвестным внутренним устройством. Постулируется, что оракул способен решить определенные проблемы разрешимости за один такт машины Тьюринга. Машина Тьюринга взаимодействует с оракулом путем записи на свою ленту входных данных для оракула и затем запуском оракула на исполнение. За один шаг оракул вычисляет функцию, стирает входные данные и пишет выходные данные на ленту. Иногда машина Тьюринга описывается как имеющая две ленты, одна предназначена для входных данных оракула, другая — для выходных.
Определение: |
Оракул — программа | , вычисляющая за времени, верно ли, что .
Сложностный класс задач, решаемых алгоритмом из класса
с оракулом для языка , обозначают . Если — множество языков, то .