Конечно порождённая группа — различия между версиями
м (rollbackEdits.php mass rollback) |
|
(не показаны 2 промежуточные версии 2 участников) | |
(нет различий)
|
Текущая версия на 19:06, 4 сентября 2022
Определение: |
Пусть группы . Обозначим через наименьшую подгруппу, содержащую . Ею является множество всех возможных произведений элементов и их обратных. Если , то говорят, что является системой образующих для . называется конечно порожденной, если у нее есть конечная система образующих. | — подмножество элементов
Примеры
- Любая циклическая группа является конечно порожденной. Множество в этом случае состоит из одного элемента.
- Группа целых чисел по сложению является конечно порожденной: .
- Группа перестановок множества из трех элементов: .
- Группа рациональных чисел по сложению — не конечно порожденная.