PCP-система — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
| (не показано 7 промежуточных версий 5 участников) | |||
| Строка 29: | Строка 29: | ||
== Свойства == | == Свойства == | ||
{{Теорема | {{Теорема | ||
| − | |statement = <tex>\mathrm{PCP}[0, 0]</tex> = <tex>\mathrm{PCP}[O(log(n)), 0]</tex> = <tex>\mathrm{PCP}[0, O(log(n))]</tex> = <tex>\mathrm{P}</tex>. | + | |statement = <tex>\mathrm{PCP}[0, 0]</tex> = <tex>\mathrm{PCP}[O(\log(n)), 0]</tex> = <tex>\mathrm{PCP}[0, O(\log(n))]</tex> = <tex>\mathrm{P}</tex>. |
|proof = | |proof = | ||
* <tex>\mathrm{PCP}[0, 0]</tex> = <tex>\mathrm{P}</tex>: вероятностная МТ не использует случайные биты и не обращается к доказательству, то есть работает как детерминированная МТ, работающая за полиномиальное время. | * <tex>\mathrm{PCP}[0, 0]</tex> = <tex>\mathrm{P}</tex>: вероятностная МТ не использует случайные биты и не обращается к доказательству, то есть работает как детерминированная МТ, работающая за полиномиальное время. | ||
| − | * <tex>\mathrm{PCP}[O(log(n)), 0]</tex> = <tex>\mathrm{P}</tex>: доступ к <tex>O(log(n))</tex> случайных бит не меняет ситуации, так как все возможные битовые цепочки логарифмической длины детерминированная МТ может сгенерировать и проверить за полиномиальное время. | + | * <tex>\mathrm{PCP}[O(\log(n)), 0]</tex> = <tex>\mathrm{P}</tex>: доступ к <tex>O(\log(n))</tex> случайных бит не меняет ситуации, так как все возможные битовые цепочки логарифмической длины детерминированная МТ может сгенерировать и проверить за полиномиальное время. |
| − | * <tex>\mathrm{PCP}[0, O(log(n))]</tex> = <tex>\mathrm{P}</tex>: так как доступа к случайным битам нет, <tex>\pi</tex> можно рассматривать как битовую цепочку логарифмической длины. Все возможные такие цепочки детерминированная МТ может сгенерировать и проверить за полиномиальное время. | + | * <tex>\mathrm{PCP}[0, O(\log(n))]</tex> = <tex>\mathrm{P}</tex>: так как доступа к случайным битам нет, <tex>\pi</tex> можно рассматривать как битовую цепочку логарифмической длины. Все возможные такие цепочки детерминированная МТ может сгенерировать и проверить за полиномиальное время. |
}} | }} | ||
{{Теорема | {{Теорема | ||
|statement = <tex>\mathrm{PCP}[poly(n), 0]</tex> = <tex>\mathrm{coRP}</tex>. | |statement = <tex>\mathrm{PCP}[poly(n), 0]</tex> = <tex>\mathrm{coRP}</tex>. | ||
|proof = | |proof = | ||
| − | Очевидно следует из [[ | + | Очевидно следует из [[Классы RP и coRP#Определения|определения coRP]]. |
}} | }} | ||
{{Теорема | {{Теорема | ||
| Строка 44: | Строка 44: | ||
|proof = | |proof = | ||
Очевидно следует из [[Классы_NP_и_Σ₁|определения Σ₁]]. | Очевидно следует из [[Классы_NP_и_Σ₁|определения Σ₁]]. | ||
| + | }} | ||
| + | {{Теорема | ||
| + | |id=pcp_th | ||
| + | |about=[[PCP-теорема]] | ||
| + | |statement=<tex>\mathrm{PCP}[log(n), O(1)] = \mathrm{NP}</tex> | ||
| + | |proof= | ||
| + | В одну сторону включение тривиально <tex>\mathrm{PCP}(\log n, 1) \subseteq \mathrm{NTIME}(2^{O(\log n)}) = NP</tex>. | ||
| + | |||
| + | Обратное включение <tex>NP \subseteq \mathrm{PCP}(\log n, 1)</tex> нетривиально и рассматривается в [[PCP-теорема | PCP-теореме]]. | ||
}} | }} | ||
Текущая версия на 19:35, 4 сентября 2022
PCP(probabilistically checkable proof) - вид доказательства, проверяемого рандомизированным алгоритмом, использующим ограниченное число случайных бит и читающим ограниченное число бит доказательства. Такой алгоритм должен с достаточно высокими вероятностями принимать корректные доказательства и отвергать ошибочные.
Определения
| Определение: |
-системой (системой вероятностно проверяемых доказательств) с полнотой и обоснованностью над алфавитом для языка , где , называется верификатор — вероятностная машина Тьюринга, имеющая доступ к доказательству — цепочке из , удовлетворяющая следующим свойствам:
|
| Определение: |
| Randomness complexity (вероятностной сложностью) верификатора называется число случайных битов, используемых за всё время работы со входом длины . |
| Определение: |
| Query complexity (запросной сложностью) верификатора называется число запросов битов из , отсылаемых за всё время работы со входом длины . |
| Определение: |
| Верификатор называется non-adaptive (неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все запросы отправить одновременно. |
| Определение: |
| Сложностный класс — это объединение всех языков, для которых существует -система над бинарным алфавитом с полнотой и обоснованностью , в которой неадаптивный верификатор работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно и , а доказательства имеют экспоненциальную длину. Часто обозначают как . |
Свойства
| Теорема: |
= = = . |
| Доказательство: |
|
| Теорема: |
= . |
| Доказательство: |
| Очевидно следует из определения coRP. |
| Теорема: |
= . |
| Доказательство: |
| Очевидно следует из определения Σ₁. |
| Теорема (PCP-теорема): |
| Доказательство: |
|
В одну сторону включение тривиально . Обратное включение нетривиально и рассматривается в PCP-теореме. |
Пример
| Теорема: |
Graph Nonisomorphism(GNI) . |
| Доказательство: |
|
и — графы на вершинах. Требуется проверить, неизоморфны ли они друг другу.
Верификатором будет вероятностная МТ, работающая эквивалентно следующему псевдокоду: p() { i = random{1, 2}; = random permutation{1..n}; = ; if ( == 0) or ( == 3-i) { return 0; } // == i return 1; } Проверим полноту и обоснованность:
|