Задача многокритериальной оптимизации. Multiobjectivization — различия между версиями
(→Задачи) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 91: | Строка 91: | ||
0, & \mbox{if } |B| = 1 \mbox{ and }b_1 \neq k, \mbox{ else} | 0, & \mbox{if } |B| = 1 \mbox{ and }b_1 \neq k, \mbox{ else} | ||
\\1,& \mbox{if } |B| = 1 \mbox{ and }b_1 = k, \mbox{ else} | \\1,& \mbox{if } |B| = 1 \mbox{ and }b_1 = k, \mbox{ else} | ||
− | \\|B|+f_k(B_L)+f_k(B_R),& \mbox{if }(\forall i \{b_i=k\}, | + | \\|B|+f_k(B_L)+f_k(B_R),& \mbox{if }(\forall i \{b_i=k\}), |
\\f_k(B_L) + f_k(B_R), & \mbox{otherwise} | \\f_k(B_L) + f_k(B_R), & \mbox{otherwise} | ||
\end{cases} | \end{cases} | ||
Строка 97: | Строка 97: | ||
где <math>f_0(x)</math> – первая цель; <math>f_0(x)</math> – вторая цель. | где <math>f_0(x)</math> – первая цель; <math>f_0(x)</math> – вторая цель. | ||
+ | |||
+ | Данный подход помогает избежать проблему локальных максимумов (минимумов). | ||
==== Задача коммивояжера ==== | ==== Задача коммивояжера ==== |
Текущая версия на 19:13, 4 сентября 2022
Содержание
Введение
В данной статье рассматривается многокритериальная оптимизация, её задача. Рассматривается понятие Парето-фронт - множество Парето оптимальных значений. Также рассматривается задача коммивояжера и предлагается алгоритм её мультиобъективизации
Задача многокритериальной оптимизации
Постановка задачи
Определение: |
Задача многокритериальной оптимизации:
|
Так как не существует единого решение, которое было бы максимальным для всех целевых функций, вместо него можно искать множество
множество Парето оптимальных значений.Множество Парето оптимальных значений
Определение: |
Множество Парето оптимальных значений:
|
Выражение
означает, что доминирует над .Говорят, что
доминирует над . по Парето, если не хуже по всем критериям и хотя бы по одному критерию превосходит . В таком случае в выборе нет смысла, т.к. по всем параметрам не уступает, а по каким-то и превосхожит . Если рассматривать всего два критерия то на рис. 1 показана область пространства, доминируемая данным решением А. Эта область «замкнута»: элементы на ее границе также доминируемы А
Определение: |
Для двух решений | и говорят тогда и только тогда, когда – такую пару решений называют недоминируемой
На рис. 2 показана граница Парето для возможных решений в двухкритериальном пространстве
Множество Парето оптимальных недоминируемых решений называется Парето фронтом.
Multi-objectivization
Суть метода мульти-объективизации заключается в разбитии сложной задачи с одной целевой функцией на несколько подзадач, найти для каждой подзадачи решение и выбрать оптимальное решение.
Для выполнения оптимизации многокритериальной задачи мы должны добавить в целевую функцию новые параметры, либо должны добавить новые целевые функции.
Сложность этой процедуры заключается в разложении проблемы на ряд мелких независимых между собой подпроблем.
Алгоритмы
Hill-Climbers
Определение: |
Hill-Climbers – Итеративный алгоритм, который начинается с произвольного решения проблемы, а затем пытается найти лучшее решение, постепенно изменяя его. Если изменения позволяют найти лучшее решение, алгоритм сохраняет его и повторяет и повторяет своё выполнение до тех пор, пока лучшие решения не могут быть найдены |
Initialization: | Init_pop |
Main Loop: |
if if | Rand_mem , Rand_mem
Termination: | return Best |
Задачи
Hierarchical-if-and-only-if function
H-IIF – предназначена для моделирования проблемы с блочной структурой, каждый блок которой строго связан с остальными блоками.
- ,
где
– блок бит – размер блока, а – левая и правая часть блока соответственно.Применяя к этой задаче мультиобъективизацию, разобьём задачу
на -задач.Представим, как будет выглядеть
:где
– первая цель; – вторая цель.Данный подход помогает избежать проблему локальных максимумов (минимумов).
Задача коммивояжера
Задача коммивояжера (TSP)является наиболее известно из всего класса
-сложных задач. Формулируется задача следующим образом:Задано
– множество городов и для каждой пары задано расстояние. Наша цель – найти цепь из городов, минимизирующую величину:Применяя к этой задаче мультиобъктивизацию, нужно разбить её на подзадачи. TSP – является
-сложной именно потому, что нет хорошего разложения этой задачи. Тем не менее задачу можно разбить на две или больше подтуров, каждый из которых мы можем минимизировать.Представим подтуры в виде двух городов. Тогда наша задача примет вид:
- where
- and ,
где
и – два города, указанных априори. Если , меняем их местами.Предполагается, что
и выбраны произвольно.