Сравнения — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Сравнения по модулю)
м (rollbackEdits.php mass rollback)
 
(не показано 19 промежуточных версий 4 участников)
Строка 1: Строка 1:
 
== Сравнения по модулю ==
 
== Сравнения по модулю ==
 
Будем рассматривать целые числа в связи с остатками от деления их на данное целое число '''m''', которое назовем модулем.
 
Будем рассматривать целые числа в связи с остатками от деления их на данное целое число '''m''', которое назовем модулем.
Каждому целому числу отвечает определенный остаток от деления его на '''m'''. Если двум целым '''a''' и '''b''' отвечает один и тот же остаток '''r''', то они называются сравнимыми по модулю '''m'''.<br>
+
Каждому целому числу отвечает определенный остаток от деления его на '''m'''. Если двум целым '''a''' и '''b''' отвечает один и тот же остаток '''r''', то они называются сравнимыми по модулю '''m'''.<br><br>
Сравнимость для '''a''' и '''b''' записывается так :
+
Сравнимость для '''a''' и '''b''' записывается так : <br>
<math>a \equiv b(mod \text{ } m)</math> <br>
+
<math>a \equiv b(mod \text{ } m)</math> <br><br>
Сравнимость чисел '''a''' и '''b''' по модулю '''m''' равносильна возможности представить '''a''' в форме  
+
Сравнимость чисел '''a''' и '''b''' по модулю '''m''' равносильна:
<math>a = b + mt </math>, где t - целое.
+
*1. Возможности представить '''a''' в форме <tex>\Huge{a = b + mt}</tex>, где t - целое.
 +
*2. Делимости <tex>\Huge{a - b}</tex> на '''m'''.
 +
== Арифметика сравнений ==
 +
 
 +
=== Свойства сравнений ===
 +
*1. Два числа, сравнимые с третьим сравнимы между собой. <tex>a \equiv c(mod \text{ }m) \text{, } b \equiv c(mod \text{ }m) \Rightarrow a \equiv b(mod \text{ }m)</tex>
 +
*2. Сравнения можно почленно складывать. <tex> a_1 + a_2 + a_3 \equiv b_1 + b_2 + b_3(mod \text{ }m)</tex>
 +
*3. Сравнения можно почленно перемножать. <tex> a_1a_2a_3 \equiv b_1b_2b_3(mod \text{ }m)</tex>
 +
*4. Обе части сравнения можно разделить на их общий делитель, если последний не взаимно прост с модулем.
 +
*5. Обе части сравнения можно умножить на одно и тоже число, кроме общего делителя.
 +
*6. Обе части сравнения и модуль можно умножить на их общий делитель.
 +
*7. Если сравнение <tex>a\equiv b</tex> имеет место по нескольким модулям, то оно имеет место и по модулю равному [[Наименьшее общее кратное|НОК]] этих модулей.
 +
*8. Если сравнение имеет место по модулю '''m''', то оно имеет место и по модулю '''d''', равному любому делителю числа '''m'''.
 +
*9. Если одна часть сравнения и модуль не делятся на некоторое число, то и другая сторона сравнения не должна делится на это число, кроме некоторых исключений.
 +
*10. Если <tex>a \equiv b(mod \text{ }m) </tex>, то <tex>(a,m) = (b,m) </tex>.
 +
 
 +
 
 +
== Полная и приведенная система вычетов ==
 +
Числа равноостаточные(сравнимые по модулю '''m''') образуют класс чисел по модулю '''m'''.
 +
Из такого определения следует, что всем числам класса отвечает один остаток '''r''', и мы получим все числа класса,
 +
если в форме <tex>mt + r </tex> заставим t пробегать все целые числа. Таким образом для каждого значения остатка имеется свой класс чисел. <br><br>
 +
Любое число класса называется '''вычетом''' по модулю '''m'''. Вычет получаемый при <tex> t = 0</tex>, равный самому остатку '''r''',
 +
называется '''наименьшим неотрицательным вычетом'''.<br><br>
 +
Любые '''m''' чисел, попарно несравнимые по модулю '''m''', образуют '''полную систему вычетов''' по этому модулю.<br><br>
 +
Согласно 10-му свойству сравнений, числа одного класса по модулю '''m''' имеют одинаковый [[Наибольший общий делитель|НОД]]. Особенно важны классы, содержащие числа, взаимно простые с модулем. Взяв вычет от каждого такого класса, получим '''приведенную систему вычетов''' по модулю '''m'''.

Текущая версия на 19:38, 4 сентября 2022

Сравнения по модулю

Будем рассматривать целые числа в связи с остатками от деления их на данное целое число m, которое назовем модулем. Каждому целому числу отвечает определенный остаток от деления его на m. Если двум целым a и b отвечает один и тот же остаток r, то они называются сравнимыми по модулю m.

Сравнимость для a и b записывается так :
[math]a \equiv b(mod \text{ } m)[/math]

Сравнимость чисел a и b по модулю m равносильна:

  • 1. Возможности представить a в форме [math]\Huge{a = b + mt}[/math], где t - целое.
  • 2. Делимости [math]\Huge{a - b}[/math] на m.

Арифметика сравнений

Свойства сравнений

  • 1. Два числа, сравнимые с третьим сравнимы между собой. [math]a \equiv c(mod \text{ }m) \text{, } b \equiv c(mod \text{ }m) \Rightarrow a \equiv b(mod \text{ }m)[/math]
  • 2. Сравнения можно почленно складывать. [math] a_1 + a_2 + a_3 \equiv b_1 + b_2 + b_3(mod \text{ }m)[/math]
  • 3. Сравнения можно почленно перемножать. [math] a_1a_2a_3 \equiv b_1b_2b_3(mod \text{ }m)[/math]
  • 4. Обе части сравнения можно разделить на их общий делитель, если последний не взаимно прост с модулем.
  • 5. Обе части сравнения можно умножить на одно и тоже число, кроме общего делителя.
  • 6. Обе части сравнения и модуль можно умножить на их общий делитель.
  • 7. Если сравнение [math]a\equiv b[/math] имеет место по нескольким модулям, то оно имеет место и по модулю равному НОК этих модулей.
  • 8. Если сравнение имеет место по модулю m, то оно имеет место и по модулю d, равному любому делителю числа m.
  • 9. Если одна часть сравнения и модуль не делятся на некоторое число, то и другая сторона сравнения не должна делится на это число, кроме некоторых исключений.
  • 10. Если [math]a \equiv b(mod \text{ }m) [/math], то [math](a,m) = (b,m) [/math].


Полная и приведенная система вычетов

Числа равноостаточные(сравнимые по модулю m) образуют класс чисел по модулю m. Из такого определения следует, что всем числам класса отвечает один остаток r, и мы получим все числа класса, если в форме [math]mt + r [/math] заставим t пробегать все целые числа. Таким образом для каждого значения остатка имеется свой класс чисел.

Любое число класса называется вычетом по модулю m. Вычет получаемый при [math] t = 0[/math], равный самому остатку r, называется наименьшим неотрицательным вычетом.

Любые m чисел, попарно несравнимые по модулю m, образуют полную систему вычетов по этому модулю.

Согласно 10-му свойству сравнений, числа одного класса по модулю m имеют одинаковый НОД. Особенно важны классы, содержащие числа, взаимно простые с модулем. Взяв вычет от каждого такого класса, получим приведенную систему вычетов по модулю m.