Правильные скобочные последовательности — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 29 промежуточных версий 14 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
− | |||
== Определения == | == Определения == | ||
{{Определение | {{Определение | ||
|id = def1 | |id = def1 | ||
− | |definition ='''Скобочная последовательность''' {{---}} класс комбинаторных объектов, представляющих собой последовательность скобочных символов.}} | + | |definition ='''Скобочная последовательность''' (англ. ''Bracket Sequences'') {{---}} класс комбинаторных объектов, представляющих собой последовательность скобочных символов.}} |
'''Примеры скобочных последовательностей''' | '''Примеры скобочных последовательностей''' | ||
− | * | + | *<tex>(())))(</tex> |
− | * | + | *<tex>)()()))()(()())</tex> |
{{Определение | {{Определение | ||
|id = def1 | |id = def1 | ||
− | |definition ='''Правильная скобочная последовательность''' {{---}} частный случай скобочной последовательности, определяющийся следующими образами: | + | |definition ='''Правильная скобочная последовательность''' (анлг. ''Correct Bracket Sequences'') {{---}} частный случай скобочной последовательности, определяющийся следующими образами: |
− | * | + | *<tex>\varepsilon</tex> (пустая строка) есть правильная скобочная последовательность; |
− | *пусть | + | *пусть <tex>S</tex> {{---}} правильная скобочная последовательность, тогда <tex>(S)</tex> есть правильная скобочная последовательность; |
− | *пусть | + | *пусть <tex>S1</tex>, <tex>S2</tex> {{---}} правильные скобочные последовательности, тогда <tex>S1S2</tex> есть правильная скобочная последовательность; |
}} | }} | ||
− | '''Примеры правильных | + | '''Примеры правильных скобочных последовательностей''' |
− | * | + | *<tex>((()()()()))</tex> |
− | * | + | *<tex>(())(()())</tex> |
== Алгоритм проверки правильности скобочной последовательности == | == Алгоритм проверки правильности скобочной последовательности == | ||
− | Пусть нам дана скобочная последовательность, записанная в строку | + | Пусть нам дана скобочная последовательность, записанная в строку <tex>s</tex>. Возьмем переменную <tex>\mathtt{counter}</tex>, <tex>\mathtt{counter} = 0</tex>, в которой мы будем поддерживать баланс. Будем последовательно перебирать все символы этой строки. Если мы встречаем открывающуюся скобку, то увеличиваем <tex>\mathtt{counter}</tex> на <tex>1</tex>, закрывающую {{---}} уменьшаем на <tex>1</tex>. Если на протяжении всего перебора <tex>\mathtt{counter}</tex> было неотрицательным (не встречалось закрывающих скобок, для которых не было соответствующих открывающих) и после завершения осталось нулем (все открывающие скобки закрыты, при этом нет лишних закрытых скобок), то скобочная последовательность правильна. |
===Псевдокод=== | ===Псевдокод=== | ||
− | check(s) | + | '''boolean''' check(s: '''string'''): |
counter = 0 | counter = 0 | ||
− | for i = 1 to length(s) | + | '''for''' i = 1 '''to''' length(s) |
− | if s[i] == '(' | + | '''if''' s[i] == '(' |
counter++ | counter++ | ||
− | else | + | '''else''' |
counter-- | counter-- | ||
− | if counter < 0 | + | '''if''' counter < 0 |
− | return false | + | '''return''' ''false'' |
− | + | '''return''' counter == 0 | |
− | |||
− | |||
− | |||
Надо отметить, что скобочные последовательности могут состоять не только из одного типа скобок. При этом недопустимо такое расположение, когда один тип скобок закрывает другой: | Надо отметить, что скобочные последовательности могут состоять не только из одного типа скобок. При этом недопустимо такое расположение, когда один тип скобок закрывает другой: | ||
Строка 45: | Строка 40: | ||
===Примеры скобочных последовательностей с несколькими типами скобок=== | ===Примеры скобочных последовательностей с несколькими типами скобок=== | ||
− | * | + | *<tex>()[()]\{()()[]\}</tex> {{---}} верно |
− | * | + | *<tex>[(]\{\})</tex> {{---}} неверно |
− | В этом случае для проверки надо будет использовать стек. | + | В этом случае для проверки надо будет использовать [[Стек | стек]]. |
− | == Лексикографический | + | == Лексикографический порядок правильных скобочных последовательностей == |
− | Для того, чтобы определить лексикографический порядок для правильных скобочных последовательностей, надо установить порядок на алфавите, например так | + | Для того, чтобы определить лексикографический порядок для правильных скобочных последовательностей, надо установить порядок на алфавите, например так <tex>(\ <\ )</tex>. Для последовательностей с разным типом скобок надо определять свой порядок в зависимости от числа скобок, причем любая открывающаяся скобка должна быть меньше закрывающейся, например <tex>(\ <\ [\ <\ )\ <\ ]</tex>. |
− | Для последовательностей с разным типом скобок надо определять свой порядок в зависимости от числа скобок, причем любая открывающаяся скобка должна быть меньше закрывающейся, например | ||
− | ===Примеры лексикографического порядка для | + | ===Примеры лексикографического порядка для <tex>n</tex> и <tex>k</tex>, где <tex>n</tex> {{---}} число открывающихся скобок, а <tex>k</tex> {{---}} число видов скобок=== |
− | {| | + | {| class="wikitable" |
− | + | !colspan="2" style="padding:7px"| <tex>n = 3</tex> | |
+ | !colspan="3" style="padding:7px"| <tex>k = 1</tex> | ||
|- | |- | ||
− | | | + | !style="padding:7px"|<tex>((()))</tex> |
+ | !style="padding:7px"|<tex>(()())</tex> | ||
+ | !style="padding:7px"|<tex>(())()</tex> | ||
+ | !style="padding:7px"|<tex>()(())</tex> | ||
+ | !style="padding:7px"|<tex>()()()</tex> | ||
|} | |} | ||
− | {| | + | {| class="wikitable" cellpadding="3" |
− | | | + | !colspan="2" style="padding:7px"|<tex>n = 2</tex> |
+ | !colspan="2" style="padding:7px"|<tex>k = 2</tex> | ||
|- | |- | ||
− | | | + | !style="padding:7px"|<tex>()[]</tex> |
+ | !style="padding:7px"|<tex>([])</tex> | ||
+ | !style="padding:7px"|<tex>[()]</tex> | ||
+ | !style="padding:7px"|<tex>[]()</tex> | ||
|} | |} | ||
− | + | == Алгоритмы генерации == | |
− | |||
− | == | ||
− | + | ===Рекурсивный алгоритм получения лексикографического порядка=== | |
− | + | Пусть нам известно число <tex>n</tex>. Надо вывести все правильные скобочные последовательности в лексикографическом порядке с <tex>n</tex> открывающимися скобками: | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Для запуска алгоритма необходимо сделать вызов <tex>\mathrm{gen}(n</tex>, <tex>0</tex>, <tex>0</tex>, <tex>"")</tex>. | |
+ | *<tex> \mathtt{ans}</tex> {{---}} строка, в которой мы считаем ответ | ||
+ | *<tex> \mathtt{counter\_open}</tex> - количество открывающих скобок в данный момент | ||
+ | *<tex> \mathtt{counter\_close}</tex> - количество закрывающих скобок в данный момент | ||
+ | '''function''' gen(n: '''int''', counter_open: '''int''', counter_close: '''int''', ans: '''string'''): | ||
+ | '''if''' counter_open + counter_close == 2 * n | ||
+ | print(ans) | ||
+ | '''return''' | ||
+ | '''if''' counter_open < n | ||
+ | gen(n, counter_open + 1, counter_close, ans + '(') | ||
+ | '''if''' counter_open > counter_close | ||
+ | gen(n, counter_open, counter_close + 1, ans + ')') | ||
− | + | Если есть возможность поставить открывающую скобку, то мы ставим её. Аналогично после этого если есть возможность поставить закрывающую скобку, то после этого мы ставим и её.<br> | |
− | + | Таким образом строки будут выведены в лексографическом порядке, так как сначала мы мы пытаемся поставить открывающую скобку. | |
− | + | При этом мы перебираем все возможные варианты последующих скобок для каждого возможного префикса <tex>\mathtt{ans}</tex>, а следовательно в результате получаем все возможножные правильные скобочные последовательности | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
===Генерация следующей скобочной последовательности=== | ===Генерация следующей скобочной последовательности=== | ||
− | Пусть нам известна строка | + | Пусть нам известна строка <tex>s</tex>, представляющая собой правильную скобочную последовательность. Нам необходимо вывести следующую скобочную последовательность, а если ее нет, то вывести "No solution". Чтобы получить следующую скобочную последовательность надо найти последнюю открывающуюся скобку, которую можно заменить (на этом месте мы можем поставить закрывающую скобку, не нарушив условия правильности скобочной последовательности, то есть на протяжении проверки на правильность counter должен быть неотрицательным), заменить ее на закрывающуюся, а оставшиеся в конце скобки (если они есть) заменить на минимально возможную последовательность скобок: |
− | next(s) | + | '''string''' next(s: '''string'''): |
counter_close = 0 | counter_close = 0 | ||
counter_open = 0 | counter_open = 0 | ||
− | for i = length(s) downto 1 | + | '''for''' i = length(s) '''downto''' 1 |
− | if s[i] == '(' | + | '''if''' s[i] == '(' |
counter_open++ | counter_open++ | ||
− | if counter_close > counter_open | + | '''if''' counter_close > counter_open |
− | break | + | '''break''' |
− | else | + | '''else''' |
counter_close++ | counter_close++ | ||
− | + | <font color="Green">// начиная с символа с индексом "length(s) - counter_open - counter_close" удаляем все символы (индексация с 0)</font> | |
− | if s == "" | + | remove(s[length(s) - counter_open - counter_close], s[length(s) - 1]) |
− | return | + | '''if''' s == "" |
− | s = s +')' | + | '''return''' "No Solution" |
− | + | '''else''' | |
− | + | s = s +')' | |
− | + | '''for''' j = 1 '''to''' counter_open | |
− | + | s = s + '(' | |
− | + | '''for''' j = 1 '''to''' counter_close - 1 | |
− | + | s = s + ')' | |
− | + | '''return''' s | |
===Получение лексикографического порядка=== | ===Получение лексикографического порядка=== | ||
− | Пусть нам известно число | + | Пусть нам известно число <tex>n</tex>. Надо вывести все правильные скобочные последовательности в лексикографическом порядке с <tex>n</tex> открывающимися скобками: |
− | order(n) | + | '''function''' order(n: '''int'''): |
s = "" | s = "" | ||
− | + | '''for''' j = 1 '''to''' n | |
− | + | s = s + '(' | |
− | + | '''for''' j = 1 '''to''' n | |
− | + | s = s + ')' | |
− | + | print(s) | |
− | + | '''while''' next(s) != "No Solution" | |
− | + | print(s = next(s)) | |
− | + | '''return''' | |
− | |||
− | |||
− | |||
− | |||
− | return | ||
− | Также с помощью этого алгоритма можно получить скобочную последовательность по номеру и номер по скобочной последовательности, добавив сравнение с нужной последовательностью и счетчик. Но это далеко не самый оптимальный алгоритм для подобного типа задач и он не будет нормально работать для больших | + | Также с помощью этого алгоритма можно получить скобочную последовательность по номеру и номер по скобочной последовательности, добавив сравнение с нужной последовательностью и счетчик. Но это далеко не самый оптимальный алгоритм для подобного типа задач и он не будет нормально работать для больших <tex>n</tex>. |
===Получение номера последовательности=== | ===Получение номера последовательности=== | ||
− | Пусть | + | Пусть <tex>n</tex> — количество пар скобок в последовательности. Требуется по заданной правильной скобочной последовательности найти её номер в списке лексикографически упорядоченных правильных скобочных последовательностей. |
− | Научимся считать вспомогательную динамику | + | Научимся считать вспомогательную [[Динамическое программирование | динамику]] <tex>d[i][j]</tex>, где <tex>i</tex> — длина скобочной последовательности (она "полуправильная": всякой закрывающей скобке соответствует парная открывающая, но не все открытые скобки закрыты), <tex>j</tex> — баланс (т.е. разность между количеством открывающих и закрывающих скобок), <tex>d[i][j]</tex> — количество таких последовательностей. При подсчёте этой динамики мы считаем, что скобки бывают только одного типа. |
− | Считать эту динамику можно следующим образом. Пусть | + | Считать эту динамику можно следующим образом. Пусть <tex>d[i][j]</tex> — величина, которую мы хотим посчитать. Если <tex>i = 0</tex>, то ответ понятен сразу: <tex>d[0][0] = 1</tex>, все остальные <tex>d[0][j] = 0</tex>. Пусть теперь <tex>i > 0</tex>, тогда переберём, чему мог быть равен последний символ этой последовательности. Если он был равен <tex>'('</tex>, то до этого символа мы находились в состоянии <tex>(i-1,j-1)</tex>. Если он был равен <tex>')'</tex>, то предыдущим было состояние <tex>(i-1,j+1)</tex>. Таким образом, получаем формулу: |
− | + | <tex>d[i][j] = d[i-1][j-1] + d[i-1][j+1]</tex> | |
− | (считается, что все значения | + | (считается, что все значения <tex>d[i][j]</tex> при отрицательном <tex>j</tex> равны нулю). Таким образом, эту динамику мы можем посчитать за <tex>O(n^2)</tex>. |
Перейдём теперь к решению самой задачи. Сначала пусть допустимы только скобки одного типа: | Перейдём теперь к решению самой задачи. Сначала пусть допустимы только скобки одного типа: | ||
− | + | '''int''' get_number(s: '''string'''): | |
num = 0 | num = 0 | ||
depth = 0 | depth = 0 | ||
− | for i = 0 to 2 * n - 1 | + | '''for''' i = 0 '''to''' 2 * n - 1 |
− | if s[i] == '(' | + | '''if''' s[i] == '(' |
depth++ | depth++ | ||
− | else | + | '''else''' |
− | num += d[ | + | num += d[2 * n - i - 1][depth + 1] |
depth-- | depth-- | ||
− | return num | + | '''return''' num |
− | Пусть теперь разрешены скобки | + | Пусть теперь разрешены скобки <tex>k</tex> типов. Тогда при рассмотрении текущего символа <tex>s[i]</tex> до пересчёта <tex>\rm depth</tex> мы должны перебирать все скобки, которые меньше текущего символа в установленном ранее порядке, пробовать ставить эту скобку в текущую позицию (получая тем самым новый баланс <tex>\rm ndepth = \rm depth \pm 1</tex>), и прибавлять к ответу количество соответствующих "хвостов" {{---}} завершений (которые имеют длину <tex>2n - i - 1</tex>, баланс <tex>\rm ndepth</tex> и <tex>k</tex> типов скобок). Утверждается, что формула для этого количества имеет вид: |
− | + | <tex>d[2n - i - 1][ndepth] \cdot k^{(2n - i - 1 - ndepth) / 2}</tex> | |
− | Эта формула выводится из следующих соображений. Сначала мы "забываем" про то, что скобки бывают нескольких типов, и просто берём ответ из | + | Эта формула выводится из следующих соображений. Сначала мы "забываем" про то, что скобки бывают нескольких типов, и просто берём ответ из <tex>d[2n - i - 1][{\rm ndepth}] </tex> (аналогично случаю с одним типом скобок, где мы увеличивали <tex>depth</tex> на <tex>1</tex>, если скобка открывающая, и уменьшали на <tex>1</tex>, если закрывающая, <tex>ndepth = depth + 1</tex>, если мы пробуем поставить открывающую скобку, и <tex>ndepth = depth - 1</tex>, если закрывающую). Теперь посчитаем, как изменится ответ из-за наличия <tex>k</tex> типов скобок. У нас имеется <tex>2n - i - 1</tex> неопределённых позиций, из которых <tex>\rm ndepth</tex> являются скобками, закрывающими какие-то из открытых ранее, — значит, тип таких скобок мы варьировать не можем. А вот все остальные скобки (а их будет <tex>(2n - i - 1 - {\rm ndepth}) / 2</tex> пар) могут быть любого из <tex>k</tex> типов, поэтому ответ умножается на эту степень числа <tex>k</tex>. |
− | Сложность данного алгоритма | + | Сложность данного алгоритма <tex>O(n^2 + n \cdot k)</tex>. |
===Получение k-й последовательности=== | ===Получение k-й последовательности=== | ||
− | Пусть | + | Пусть <tex>n</tex> — количество пар скобок в последовательности. В данной задаче по заданному <tex>k</tex> требуется найти <tex>k</tex>-ую правильную скобочную последовательность в списке лексикографически упорядоченных последовательностей. |
− | Как и в предыдущем разделе, посчитаем динамику | + | Как и в предыдущем разделе, посчитаем динамику <tex>d[i][j]</tex> — количество правильных скобочных последовательностей длины <tex>i</tex> с балансом <tex>j</tex>. |
Пусть сначала допустимы только скобки одного типа: | Пусть сначала допустимы только скобки одного типа: | ||
− | + | '''string''' get_sequence(n: '''int''', k: '''int'''): | |
depth = 0 | depth = 0 | ||
s = "" | s = "" | ||
− | for i = 0 to 2 * n - 1 | + | '''for''' i = 0 '''to''' 2 * n - 1 |
− | if d[i + 1][depth + 1] > | + | '''if''' d[2 * n - (i + 1)][depth + 1] <tex>\geqslant</tex> k |
s += '(' | s += '(' | ||
depth++ | depth++ | ||
− | else | + | '''else''' |
− | k -= d[i + 1][depth + 1] | + | k -= d[2 * n - (i + 1)][depth + 1] |
s += ')' | s += ')' | ||
depth-- | depth-- | ||
− | return s | + | '''return''' s |
− | Пусть теперь разрешён не один, а | + | Пусть теперь разрешён не один, а <tex>k</tex> типов скобок. Тогда алгоритм решения будет отличаться от предыдущего случая только тем, что мы должны домножать значение <tex>d[2n - i - 1][\rm ndepth]</tex> на величину <tex>k^{(2n - i - 1 - \rm ndepth) / 2}</tex>, чтобы учесть, что в этом остатке могли быть скобки различных типов, а парных скобок в этом остатке будет только <tex>2n - i - 1 - \rm ndepth</tex>, поскольку <tex>\rm ndepth</tex> скобок являются закрывающими для открывающих скобок, находящихся вне этого остатка (а потому их типы мы варьировать не можем). |
− | Сложность данного алгоритма | + | Сложность данного алгоритма <tex>O(n^2 + n \cdot k)</tex>. |
+ | |||
+ | ==Количество правильных скобочных последовательностей== | ||
+ | Количество правильных скобочных последовательностей со скобками одного типа совпадает с [[Числа Каталана | числами Каталана]]. | ||
+ | |||
+ | == См. также == | ||
+ | *[[Числа Каталана]] | ||
+ | *[[Комбинаторные объекты]] | ||
+ | *[[Лексикографический порядок]] | ||
+ | *[[Генерация комбинаторных объектов в лексикографическом порядке]] | ||
+ | *[[Получение номера по объекту]] | ||
+ | *[[Получение объекта по номеру]] | ||
+ | *[[Получение следующего объекта]] | ||
== Источники == | == Источники == | ||
Строка 215: | Строка 214: | ||
* [http://e-maxx.ru/algo/bracket_sequences MAXimal :: algo :: Правильные скобочные последовательности] | * [http://e-maxx.ru/algo/bracket_sequences MAXimal :: algo :: Правильные скобочные последовательности] | ||
− | |||
− | |||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Комбинаторика ]] | [[Категория: Комбинаторика ]] |
Текущая версия на 19:17, 4 сентября 2022
Содержание
Определения
Определение: |
Скобочная последовательность (англ. Bracket Sequences) — класс комбинаторных объектов, представляющих собой последовательность скобочных символов. |
Примеры скобочных последовательностей
Определение: |
Правильная скобочная последовательность (анлг. Correct Bracket Sequences) — частный случай скобочной последовательности, определяющийся следующими образами:
|
Примеры правильных скобочных последовательностей
Алгоритм проверки правильности скобочной последовательности
Пусть нам дана скобочная последовательность, записанная в строку
. Возьмем переменную , , в которой мы будем поддерживать баланс. Будем последовательно перебирать все символы этой строки. Если мы встречаем открывающуюся скобку, то увеличиваем на , закрывающую — уменьшаем на . Если на протяжении всего перебора было неотрицательным (не встречалось закрывающих скобок, для которых не было соответствующих открывающих) и после завершения осталось нулем (все открывающие скобки закрыты, при этом нет лишних закрытых скобок), то скобочная последовательность правильна.Псевдокод
boolean check(s: string): counter = 0 for i = 1 to length(s) if s[i] == '(' counter++ else counter-- if counter < 0 return false return counter == 0
Надо отметить, что скобочные последовательности могут состоять не только из одного типа скобок. При этом недопустимо такое расположение, когда один тип скобок закрывает другой:
Примеры скобочных последовательностей с несколькими типами скобок
- — верно
- — неверно
В этом случае для проверки надо будет использовать стек.
Лексикографический порядок правильных скобочных последовательностей
Для того, чтобы определить лексикографический порядок для правильных скобочных последовательностей, надо установить порядок на алфавите, например так
. Для последовательностей с разным типом скобок надо определять свой порядок в зависимости от числа скобок, причем любая открывающаяся скобка должна быть меньше закрывающейся, например .Примеры лексикографического порядка для и , где — число открывающихся скобок, а — число видов скобок
Алгоритмы генерации
Рекурсивный алгоритм получения лексикографического порядка
Пусть нам известно число
. Надо вывести все правильные скобочные последовательности в лексикографическом порядке с открывающимися скобками:Для запуска алгоритма необходимо сделать вызов
, , , .- — строка, в которой мы считаем ответ
- - количество открывающих скобок в данный момент
- - количество закрывающих скобок в данный момент
function gen(n: int, counter_open: int, counter_close: int, ans: string): if counter_open + counter_close == 2 * n print(ans) return if counter_open < n gen(n, counter_open + 1, counter_close, ans + '(') if counter_open > counter_close gen(n, counter_open, counter_close + 1, ans + ')')
Если есть возможность поставить открывающую скобку, то мы ставим её. Аналогично после этого если есть возможность поставить закрывающую скобку, то после этого мы ставим и её.
Таким образом строки будут выведены в лексографическом порядке, так как сначала мы мы пытаемся поставить открывающую скобку.
При этом мы перебираем все возможные варианты последующих скобок для каждого возможного префикса , а следовательно в результате получаем все возможножные правильные скобочные последовательности
Генерация следующей скобочной последовательности
Пусть нам известна строка
, представляющая собой правильную скобочную последовательность. Нам необходимо вывести следующую скобочную последовательность, а если ее нет, то вывести "No solution". Чтобы получить следующую скобочную последовательность надо найти последнюю открывающуюся скобку, которую можно заменить (на этом месте мы можем поставить закрывающую скобку, не нарушив условия правильности скобочной последовательности, то есть на протяжении проверки на правильность counter должен быть неотрицательным), заменить ее на закрывающуюся, а оставшиеся в конце скобки (если они есть) заменить на минимально возможную последовательность скобок:string next(s: string): counter_close = 0 counter_open = 0 for i = length(s) downto 1 if s[i] == '(' counter_open++ if counter_close > counter_open break else counter_close++ // начиная с символа с индексом "length(s) - counter_open - counter_close" удаляем все символы (индексация с 0) remove(s[length(s) - counter_open - counter_close], s[length(s) - 1]) if s == "" return "No Solution" else s = s +')' for j = 1 to counter_open s = s + '(' for j = 1 to counter_close - 1 s = s + ')' return s
Получение лексикографического порядка
Пусть нам известно число
. Надо вывести все правильные скобочные последовательности в лексикографическом порядке с открывающимися скобками:function order(n: int): s = "" for j = 1 to n s = s + '(' for j = 1 to n s = s + ')' print(s) while next(s) != "No Solution" print(s = next(s)) return
Также с помощью этого алгоритма можно получить скобочную последовательность по номеру и номер по скобочной последовательности, добавив сравнение с нужной последовательностью и счетчик. Но это далеко не самый оптимальный алгоритм для подобного типа задач и он не будет нормально работать для больших
.Получение номера последовательности
Пусть
— количество пар скобок в последовательности. Требуется по заданной правильной скобочной последовательности найти её номер в списке лексикографически упорядоченных правильных скобочных последовательностей.Научимся считать вспомогательную динамику , где — длина скобочной последовательности (она "полуправильная": всякой закрывающей скобке соответствует парная открывающая, но не все открытые скобки закрыты), — баланс (т.е. разность между количеством открывающих и закрывающих скобок), — количество таких последовательностей. При подсчёте этой динамики мы считаем, что скобки бывают только одного типа.
Считать эту динамику можно следующим образом. Пусть
— величина, которую мы хотим посчитать. Если , то ответ понятен сразу: , все остальные . Пусть теперь , тогда переберём, чему мог быть равен последний символ этой последовательности. Если он был равен , то до этого символа мы находились в состоянии . Если он был равен , то предыдущим было состояние . Таким образом, получаем формулу:
(считается, что все значения
при отрицательном равны нулю). Таким образом, эту динамику мы можем посчитать за .Перейдём теперь к решению самой задачи. Сначала пусть допустимы только скобки одного типа:
int get_number(s: string): num = 0 depth = 0 for i = 0 to 2 * n - 1 if s[i] == '(' depth++ else num += d[2 * n - i - 1][depth + 1] depth-- return num
Пусть теперь разрешены скобки
типов. Тогда при рассмотрении текущего символа до пересчёта мы должны перебирать все скобки, которые меньше текущего символа в установленном ранее порядке, пробовать ставить эту скобку в текущую позицию (получая тем самым новый баланс ), и прибавлять к ответу количество соответствующих "хвостов" — завершений (которые имеют длину , баланс и типов скобок). Утверждается, что формула для этого количества имеет вид:
Эта формула выводится из следующих соображений. Сначала мы "забываем" про то, что скобки бывают нескольких типов, и просто берём ответ из
(аналогично случаю с одним типом скобок, где мы увеличивали на , если скобка открывающая, и уменьшали на , если закрывающая, , если мы пробуем поставить открывающую скобку, и , если закрывающую). Теперь посчитаем, как изменится ответ из-за наличия типов скобок. У нас имеется неопределённых позиций, из которых являются скобками, закрывающими какие-то из открытых ранее, — значит, тип таких скобок мы варьировать не можем. А вот все остальные скобки (а их будет пар) могут быть любого из типов, поэтому ответ умножается на эту степень числа .Сложность данного алгоритма
.Получение k-й последовательности
Пусть
— количество пар скобок в последовательности. В данной задаче по заданному требуется найти -ую правильную скобочную последовательность в списке лексикографически упорядоченных последовательностей.Как и в предыдущем разделе, посчитаем динамику
— количество правильных скобочных последовательностей длины с балансом .Пусть сначала допустимы только скобки одного типа:
string get_sequence(n: int, k: int):
depth = 0
s = ""
for i = 0 to 2 * n - 1
if d[2 * n - (i + 1)][depth + 1]
k
s += '('
depth++
else
k -= d[2 * n - (i + 1)][depth + 1]
s += ')'
depth--
return s
Пусть теперь разрешён не один, а
типов скобок. Тогда алгоритм решения будет отличаться от предыдущего случая только тем, что мы должны домножать значение на величину , чтобы учесть, что в этом остатке могли быть скобки различных типов, а парных скобок в этом остатке будет только , поскольку скобок являются закрывающими для открывающих скобок, находящихся вне этого остатка (а потому их типы мы варьировать не можем).Сложность данного алгоритма
.Количество правильных скобочных последовательностей
Количество правильных скобочных последовательностей со скобками одного типа совпадает с числами Каталана.
См. также
- Числа Каталана
- Комбинаторные объекты
- Лексикографический порядок
- Генерация комбинаторных объектов в лексикографическом порядке
- Получение номера по объекту
- Получение объекта по номеру
- Получение следующего объекта