Алгоритм двух китайцев — различия между версиями
Alex z (обсуждение | вклад) |
м (rollbackEdits.php mass rollback) |
||
(не показано 8 промежуточных версий 6 участников) | |||
Строка 89: | Строка 89: | ||
int res = 0 | int res = 0 | ||
int minEdge[n] // создаем массив минимумов, входящих в каждую компоненту, инициализируем бесконечностью. | int minEdge[n] // создаем массив минимумов, входящих в каждую компоненту, инициализируем бесконечностью. | ||
− | for each <tex>e \in | + | for each <tex>e \in </tex> edges |
minEdge[e.to] = min(e.w, minEdge[e.to]) | minEdge[e.to] = min(e.w, minEdge[e.to]) | ||
for each <tex>v \in V \backslash \{root\}</tex> | for each <tex>v \in V \backslash \{root\}</tex> | ||
res += minEdge[v] //веса минимальных ребер точно будут в результате | res += minEdge[v] //веса минимальных ребер точно будут в результате | ||
edge zeroEdges[] //создаем массив нулевых ребер | edge zeroEdges[] //создаем массив нулевых ребер | ||
− | for each <tex>e \in | + | for each <tex>e \in </tex> edges |
if e.w == minEdge[e.to] | if e.w == minEdge[e.to] | ||
zeroEdges.pushback(<tex>e_1</tex>) // <tex>e_1</tex> - ребро е, уменьшенное на минимальный вес, входящий в e.to | zeroEdges.pushback(<tex>e_1</tex>) // <tex>e_1</tex> - ребро е, уменьшенное на минимальный вес, входящий в e.to | ||
Строка 102: | Строка 102: | ||
newComponents = Сondensation(zeroEdges) | newComponents = Сondensation(zeroEdges) | ||
edge newEdges[] //создаем массив ребер в новом графе с вершинами в полученных компонентах | edge newEdges[] //создаем массив ребер в новом графе с вершинами в полученных компонентах | ||
− | for each <tex>e \in</tex> | + | for each <tex>e \in</tex> edges |
if e.to и e.from в разных компонентах | if e.to и e.from в разных компонентах | ||
− | добавляем в newEdges ребро с концами в данных компонентах и весом e.w | + | добавляем в newEdges ребро с концами в данных компонентах и весом e.w - minEdge[e.to] |
− | res += findMST( | + | res += findMST(newEdges, ComponentsCount, newComponents[root]) |
return res | return res | ||
Строка 117: | Строка 117: | ||
==См. также== | ==См. также== | ||
* [[Алгоритм Борувки]] | * [[Алгоритм Борувки]] | ||
+ | * [http://en.wikipedia.org/wiki/Edmonds%27_algorithm Edmonds' Algorithm] | ||
* [http://rain.ifmo.ru/cat/view.php/vis/graph-spanning-trees/shortest-tree-chinese-2003 Визуализатор алгоритма] | * [http://rain.ifmo.ru/cat/view.php/vis/graph-spanning-trees/shortest-tree-chinese-2003 Визуализатор алгоритма] | ||
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Остовные деревья ]] | [[Категория: Остовные деревья ]] |
Текущая версия на 19:41, 4 сентября 2022
Алгоритм двух китайцев — алгоритм построения минимального остовного дерева во взвешенном ориентированном графе с корнем в заданной вершине. Был разработан математиками Чу Йонджином и Лю Цзенхонгом.
Содержание
Постановка задачи
Дан взвешенный ориентированный граф
и начальная вершина . Требуется построить корневое остовное дерево в с корнем в вершине , сумма весов всех ребер которого минимальна.Алгоритм
Описание
Если хотя бы одна вершина графа
недостижима из , то требуемое дерево построить нельзя.
|
Пример
Корректность
Замечания:
- После перевзвешивания в каждую вершину кроме
- Пусть
Лемма: |
Кратчайшее дерево путей в графе можно получить, найдя кратчайшее дерево путей в графе , а затем заменив в нем каждую компоненту сильной связности деревом, построенным из дуг нулевой длинны. |
Доказательство: |
Зафиксируем любое дерево путей и покажем, что в графе | найдется дерево не большей длины, имеющее такую структуру, как сказано в лемме. Для такой структуры дерева необходимо и достаточно, чтобы в каждое из подмножеств входило только по одному ребру. Меньше быть не может, иначе получится отдельная компонента связности. Если же в какое-то подмножество входит больше чем одно ребро, то все ребра кроме одного можно заменить ребрами нулевой длины, лежащими внутри подмножества, что разве лишь уменьшит длину дерева и не нарушит связности. Повторяя это преобразование нужное число раз мы добьемся искомой структуры дерева.
Из сделанных замечаний и леммы следует, что дерево
— MST в .Реализация
Обозначения:
- Граф хранится в виде множества ребер + индекс корня.
- Множество ребер - список смежности.
- Ребро - структура {from, to, weight}.
- root - текущий корень.
Особенность реализации: алгоритму не важна кратность ребер, поэтому при составлении нового графа кратные ребра могут появиться - это уменьшает асимптотику с
доПроверяем, можно ли дойти издо остальных вершин. Если можно - запускаем findMST. int findMST(edges, n, root): int res = 0 int minEdge[n] // создаем массив минимумов, входящих в каждую компоненту, инициализируем бесконечностью. for each edges minEdge[e.to] = min(e.w, minEdge[e.to]) for each res += minEdge[v] //веса минимальных ребер точно будут в результате edge zeroEdges[] //создаем массив нулевых ребер for each edges if e.w == minEdge[e.to] zeroEdges.pushback( ) // - ребро е, уменьшенное на минимальный вес, входящий в e.to if dfs(root, zeroEdges) // проверяем, можно ли дойти до всех вершин по нулевым ребрам return res int newComponents[n] // будущие компоненты связности newComponents = Сondensation(zeroEdges) edge newEdges[] //создаем массив ребер в новом графе с вершинами в полученных компонентах for each edges if e.to и e.from в разных компонентах добавляем в newEdges ребро с концами в данных компонентах и весом e.w - minEdge[e.to] res += findMST(newEdges, ComponentsCount, newComponents[root]) return res
Сложность
Всего будет построено не более
конденсаций. Конденсацию можно построить за . Значит, алгоритм можно реализовать за .Источники
- Романовский И. В. Дискретный анализ, 3-е изд., перераб. и доп. - СПб.:Невский Диалект; БХВ-Петербург, 2003. - 320 с.: ил. - ISBN 5-7940-0114-3
- http://is.ifmo.ru