Сопряжённый оператор — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м (rollbackEdits.php mass rollback)
 
(не показано 40 промежуточных версий 13 участников)
Строка 1: Строка 1:
 
{{В разработке}}
 
{{В разработке}}
 +
 +
[[Спектр линейного оператора|<<]][[Компактный оператор |>>]]
  
 
Все рассматриваемые далее пространства считаем Банаховыми.
 
Все рассматриваемые далее пространства считаем Банаховыми.
Строка 10: Строка 12:
  
 
== Естественное вложение ==
 
== Естественное вложение ==
Покажем, что между <tex> E </tex> и <tex> E^{**} </tex> существует так называемый '''естественный изоморфизм''', сохраняющий норму точки.
+
{{Утверждение
 
+
|statement=
 +
Между <tex> E </tex> и <tex> E^{**} </tex> существует так называемый '''естественный изоморфизм''', сохраняющий норму точки.
 +
|proof=
 
Введем <tex> F_x </tex> следующим образом: <tex>\forall x \in E : F_x (f) = f(x), f \in E^{*} </tex>.
 
Введем <tex> F_x </tex> следующим образом: <tex>\forall x \in E : F_x (f) = f(x), f \in E^{*} </tex>.
  
<tex> F_x : E^{*} \to \mathbb{R} </tex> — функционал, заданный на <tex>E</tex>, то есть <tex> F_x \in E^{**} </tex>.
+
<tex> F_x : E^{*} \to \mathbb{R} </tex> — функционал, заданный на <tex>E^{*}</tex>, то есть <tex> F_x \in E^{**} </tex>.
  
 
Тогда само <tex> F </tex> отображает <tex> E </tex> в <tex> E^{**} </tex>.
 
Тогда само <tex> F </tex> отображает <tex> E </tex> в <tex> E^{**} </tex>.
Строка 22: Строка 26:
 
<tex> | F_x(f) | = |f(x)| \le \| f \| \| x \| </tex>, откуда <tex> \| F_x \| \le \| x \| </tex>.
 
<tex> | F_x(f) | = |f(x)| \le \| f \| \| x \| </tex>, откуда <tex> \| F_x \| \le \| x \| </tex>.
  
С другой стороны, по теореме Хана-Банаха, <tex> \forall x_0 \in E, \exists f_0 \in E^* </tex>, что выполняются два условия:
+
С другой стороны, по следствию из теоремы Хана-Банаха, для любого <tex> x_0 \in E </tex> существует <tex> f_0 \in E^* </tex>, такое, что выполняются два условия:
 
# <tex> f_0(x_0) = \| x_0 \| </tex>
 
# <tex> f_0(x_0) = \| x_0 \| </tex>
 
# <tex> \| f_0 \| = 1 </tex>.
 
# <tex> \| f_0 \| = 1 </tex>.
Строка 29: Строка 33:
  
 
Значит, получившееся преобразование <tex> x \mapsto F_x </tex> — изометрия, <tex> \| x \| = \| F_x \| </tex>, получили '''естественное вложение''' <tex> E </tex> в <tex> E^{**} </tex>.
 
Значит, получившееся преобразование <tex> x \mapsto F_x </tex> — изометрия, <tex> \| x \| = \| F_x \| </tex>, получили '''естественное вложение''' <tex> E </tex> в <tex> E^{**} </tex>.
 +
}}
  
 +
{{Определение
 +
|definition=
 
<tex> E </tex> называется '''рефлексивным''', если <tex> E </tex> будет совпадать с <tex> E^{**} </tex> при таком отображении.
 
<tex> E </tex> называется '''рефлексивным''', если <tex> E </tex> будет совпадать с <tex> E^{**} </tex> при таком отображении.
 +
}}
  
 
Например, гильбертово пространство <tex> H </tex> рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).
 
Например, гильбертово пространство <tex> H </tex> рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).
  
<tex> C[0, 1] </tex> не является рефлексивным.
+
<tex> C[0, 1] </tex> не является рефлексивным.
  
 
== Сопряженный оператор ==
 
== Сопряженный оператор ==
Строка 56: Строка 64:
 
Получили, что <tex> \| A^* (\varphi) \| \le \| A \| \| \varphi \| </tex>, откуда <tex> \| A^* \| \le \| A \| </tex>.
 
Получили, что <tex> \| A^* (\varphi) \| \le \| A \| \| \varphi \| </tex>, откуда <tex> \| A^* \| \le \| A \| </tex>.
  
Для доказательства в обратную сторону используем следствие из теоремы Хана-Банаха:
+
Для доказательства в обратную сторону используем [[Теорема Хана-Банаха#hbnorm|следствие из теоремы Хана-Банаха]]:
  
По определению нормы: <tex> \forall \varepsilon > 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon < \| Ax \| </tex>.
+
По определению нормы оператора: <tex> \forall \varepsilon > 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon < \| Ax \| </tex>.
  
 
<tex> Ax \in F </tex>, по следствию из теоремы Хана-Банаха подберем <tex> \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| </tex>.
 
<tex> Ax \in F </tex>, по следствию из теоремы Хана-Банаха подберем <tex> \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| </tex>.
  
<tex> \| A^*(\varphi_0, x) \| = | \varphi_0(Ax) | = \| Ax \| > \| A \| - \varepsilon </tex>.
+
<tex> | A^*(\varphi_0, x) | = | \varphi_0(Ax) | = \| Ax \| > \| A \| - \varepsilon </tex>.
  
<tex> \| A^*(\varphi_0, x) \| \le \| A^*(\varphi_0) \| \| x \| = \| A^*(\varphi_0) \| \le \| A^* \| \| \varphi_0 \| = \| A^* \| </tex>.
+
<tex> | A^*(\varphi_0, x) | \le \| A^*(\varphi_0) \| \| x \| = \| A^*(\varphi_0) \| \le \| A^* \| \| \varphi_0 \| = \| A^* \| </tex>.
  
 
Соединяя эти два неравенства, получаем, что <tex> \forall \varepsilon > 0: \| A^* \| > \| A \| - \varepsilon </tex>.
 
Соединяя эти два неравенства, получаем, что <tex> \forall \varepsilon > 0: \| A^* \| > \| A \| - \varepsilon </tex>.
Строка 76: Строка 84:
 
Возьмем любое гильбертово пространство <tex> H </tex>, <tex> A : H \to H </tex>.
 
Возьмем любое гильбертово пространство <tex> H </tex>, <tex> A : H \to H </tex>.
  
<tex> \forall \varphi \in H^* </tex> по теореме Рисса об общем виде линейного функционала в <tex> H </tex> существует  
+
<tex> \forall \varphi \in H^* </tex> по теореме Рисса об общем виде линейного функционала в <tex> H </tex> существует единственный
 
<tex> z : \varphi (y) = \langle y, z \rangle, \| \varphi \| = \| z \| </tex>.
 
<tex> z : \varphi (y) = \langle y, z \rangle, \| \varphi \| = \| z \| </tex>.
  
Строка 103: Строка 111:
 
Построим сопряженный оператор:
 
Построим сопряженный оператор:
  
По теореме об общем виде линейного функционала в <tex> L_p </tex> {{TODO|t=Ее у нас в курсе не было. Спросить у Додонова, что с ней делать.}},
+
По теореме об общем виде линейного функционала в <tex> L_p </tex>,
  
 
<tex> \forall \varphi \in E^*, x \in E: \varphi(x) = \int\limits_0^1 y(t) x(t) dt, y \in L_q </tex>, где <tex> \frac 1p + \frac 1q = 1 </tex> (<tex> p </tex> и <tex> q </tex> называются '''сопряженными показателями''').
 
<tex> \forall \varphi \in E^*, x \in E: \varphi(x) = \int\limits_0^1 y(t) x(t) dt, y \in L_q </tex>, где <tex> \frac 1p + \frac 1q = 1 </tex> (<tex> p </tex> и <tex> q </tex> называются '''сопряженными показателями''').
Строка 113: Строка 121:
 
Получили, что <tex> A^*(\varphi, x) = \int\limits_0^1 ( \int\limits_0^1 K(s, t) y(s) ds) x(t) dt </tex>. Обозначим <tex> z(t) = \int\limits_0^1 K(s, t) y(s) ds </tex>, тогда <tex> A^* (\varphi) \equiv z </tex>, аналогично <tex> \varphi \equiv y </tex>.
 
Получили, что <tex> A^*(\varphi, x) = \int\limits_0^1 ( \int\limits_0^1 K(s, t) y(s) ds) x(t) dt </tex>. Обозначим <tex> z(t) = \int\limits_0^1 K(s, t) y(s) ds </tex>, тогда <tex> A^* (\varphi) \equiv z </tex>, аналогично <tex> \varphi \equiv y </tex>.
  
<tex> A^* </tex> {{---}} интегральный оператор из <tex> L_q </tex>, имеющий ядро <tex> K^*(s, t) = K(t, s) </tex>. В частности, если ядро симметрично (<tex> K(s, t) = K(t, s) </tex>) и <tex> k = 2 </tex>, то <tex> A = A^* </tex>.
+
<tex> A^* </tex> {{---}} интегральный оператор из <tex> L_q </tex>, имеющий ядро <tex> K^*(s, t) = K(t, s) </tex>. В частности, если ядро симметрично (<tex> K(s, t) = K(t, s) </tex>) и <tex> p = q = 2 </tex>, то <tex> A = A^* </tex>.
  
 
== Ортогональное дополнение ==
 
== Ортогональное дополнение ==
Строка 129: Строка 137:
  
 
{{Утверждение
 
{{Утверждение
|statement= <tex> \{ 0 \} = (E^*)^{\bot}, \{ 0 \} = E^{\bot} </tex>.
+
|statement= <tex> \{ 0 \} = (E^*)^{\bot}, \{ \mathbf{0} \} = E^{\bot} </tex>.
 
|proof=
 
|proof=
  
Строка 144: Строка 152:
 
|statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>.
 
|statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>.
 
|proof =  
 
|proof =  
<tex>\varphi \in \operatorname{Ker}A^*</tex>, <tex>A^* \varphi = 0</tex>.
+
<tex>\subset</tex>:
  
<tex>\forall x \in E: A^*(\varphi, x) = 0, A^*(\varphi, x) = \varphi(A x) \implies \varphi(A x) = 0</tex>
+
<tex>\forall \varphi \in \operatorname{Ker}A^*</tex>, <tex>A^* \varphi = \mathbf{0}</tex>.
  
 
Пусть <tex>y \in R(A) </tex>, тогда <tex> y = Ax </tex>.
 
Пусть <tex>y \in R(A) </tex>, тогда <tex> y = Ax </tex>.
  
<tex> \varphi y = \varphi(A x) = 0 </tex>, следовательно, <tex> R(A)\subset(\operatorname{Ker}A^*)^\perp</tex>.
+
<tex> \varphi (y) = \varphi(A x) = A^*(\varphi, x) = 0 </tex>, следовательно, <tex> R(A)\subset(\operatorname{Ker}A^*)^\perp</tex>.
  
 
Теперь, пусть <tex>y \in \operatorname{Cl} R(A)</tex>, тогда <tex> y = \lim y_n, y_n \in R(A)</tex>.
 
Теперь, пусть <tex>y \in \operatorname{Cl} R(A)</tex>, тогда <tex> y = \lim y_n, y_n \in R(A)</tex>.
Строка 156: Строка 164:
 
<tex>\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \varphi(y) = 0</tex>, и <tex>\operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp</tex>
 
<tex>\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \varphi(y) = 0</tex>, и <tex>\operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp</tex>
  
Проверим обратное включение:
+
<tex>\supset</tex>:
<tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)</tex>. Пусть это не так: <tex> y \notin \operatorname{Cl} R(A)</tex>.
 
  
Рассмотрим <tex> F_1 = \{ z + ty \mid z \in \operatorname{Cl}(R(A)), t \in \mathbb{R} \} </tex>. <tex>F_1</tex> {{---}} линейное множество в силу линейности  <tex>\operatorname{Cl}(R(A))</tex>.  
+
Надо показать, что <tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)</tex>. Пусть это не так: <tex> y \notin \operatorname{Cl} R(A)</tex>.  
  
Покажем, что <tex>F_1</tex> -- подпространство <tex>F</tex>.  
+
Рассмотрим <tex> F_1 = \left\{ z + ty \mid z \in \operatorname{Cl}(R(A)), y \notin \operatorname{Cl}(R(A)), t \in \mathbb{R} \right\} </tex>. <tex>F_1</tex> {{---}} линейное множество в силу линейности <tex>\operatorname{Cl}(R(A))</tex>.  
  
Проверим сначала замкнутость <tex>F_1</tex>:
+
Покажем, что <tex>F_1</tex> -- подпространство  <tex>F</tex>. Для этого нам осталось проверить замкнутость <tex>F_1</tex>:
  
Пусть <tex>z_n+t_{n}y \to u  = z + ty</tex>, хотим убедиться в том, что <tex>u \in \operatorname{Cl} R(F_1)</tex>.  
+
Пусть <tex>z_n+t_{n}y \to u  = z + ty</tex>, хотим убедиться в том, что <tex>u \in F_1</tex>.  
  
Если  <tex> |t_{n}| \le const </tex>, то выберем <tex>t_{n_k}</tex>, стремящееся к какому-то <tex>t</tex>. Из <tex>z_n+t_{n}y \to u,  t_{n_k}y \to ty </tex> получаем <tex> z_n \to z \in \operatorname{Cl}(F_1)</tex>.  
+
Если  <tex> |t_{n}| \le const </tex>, то выберем <tex>t_{n_k}</tex>, стремящееся к какому-то <tex>t</tex>. Из <tex>z_n+t_{n}y \to u,  t_{n_k}y \to ty </tex> получаем <tex> z_n \to z \in \operatorname{Cl}(R(A))</tex>.  
  
 
Если допустить, что <tex>t_{n_k} \to \infty</tex>:
 
Если допустить, что <tex>t_{n_k} \to \infty</tex>:
Строка 175: Строка 182:
 
Таким образом, <tex>\operatorname{Cl}(F_1) = F_1</tex>.
 
Таким образом, <tex>\operatorname{Cl}(F_1) = F_1</tex>.
  
Построим на <tex>F_1</tex> фунционал <tex>\varphi_0 : \varphi_0(z+ty) = t </tex>, <tex> \varphi_0(z) = 0</tex>. Этот функционал обнуляется на <tex>\operatorname{Cl}(R(A))</tex>.
+
Построим на <tex>F_1</tex> фунционал <tex>\varphi_0 : \varphi_0(z+ty) = t </tex>, <tex> \varphi_0(z) = 0</tex>. Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением непрерывности его можно продолжить на <tex>F: \widetilde{\varphi_0} \in F^*</tex>, причем так, что <tex>\widetilde{\varphi_0}\mid _{F_1} = \varphi_0</tex>.
 
 
Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением напрерывности его можно продолжить на <tex>F: \widetilde{\varphi} \in F^*</tex>.
 
 
 
<tex>\widetilde{\varphi}\mid _{F_1} = \varphi_0</tex>
 
  
<tex>\forall y \in \operatorname{Cl}(R(A)): \widetilde{\varphi_0}(y) = 0</tex>.
+
Рассмотрим значение <tex>\widetilde{\varphi_0}(y)</tex>:
  
C другой стороны, <tex> \widetilde{\varphi_0}(y) = 1</tex> {{---}} противоречие, т.к. <tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl}(R(A))</tex>.
+
* С одной стороны, <tex>\widetilde{\varphi_0}(y) = \varphi_0(y) = \varphi_0(0 + 1 y) = 1</tex>
 +
* С другой стороны, <tex>y \in (\operatorname{Ker}A^*)^\perp</tex>, а значит, на любом функционале из ядра <tex>A^*</tex>, в том числе, и на <tex>\widetilde{\varphi_0}</tex>, должно выполняться <tex>\widetilde{\varphi_0}(y) = 0</tex>
  
 +
Получили противоречие, следовательно, <tex> y \in \operatorname{Cl}(R(A))</tex>.
 
}}
 
}}
 
  
 
=== Теорема 2 ===
 
=== Теорема 2 ===
Строка 199: Строка 203:
  
 
2) Докажем теперь обратное включение:
 
2) Докажем теперь обратное включение:
Рассмотрим <tex>f \in (\operatorname{Ker}A )^\perp</tex>, если <tex>Ax=0</tex>, то <tex>f(x)=0</tex>.
 
  
Надо показать, что <tex>f \in R(A^*)</tex>, т.е. проверить, что  <tex>f = \varphi A^*</tex>.
+
<tex>(\operatorname{Ker}A )^\perp</tex> — набор таких <tex>f</tex>, что если <tex>Ax=0</tex>, то <tex>f(x)=0</tex>.
 +
 
 +
Надо показать, что <tex>f \in R(A^*)</tex>, т.е. проверить, что  <tex>f = A^* \varphi = \varphi A</tex>.
  
Если найдем <tex>\varphi</tex>, заданный на <tex>R(A)</tex> (которое замкнуто {{TODO|t=где здесь нужна замкнутость?}}), то сможем продолжить его на все <tex>F</tex> по теореме Хана-Банаха.
+
Если найдем <tex>\varphi</tex>, заданный на <tex>R(A)</tex>, то сможем продолжить его на все <tex>F</tex> по теореме Хана-Банаха.
  
 
Рассмотрим произвольное <tex>y \in R(A)</tex>, пусть <tex>y = Ax</tex> и <tex>y = Ax'</tex>.
 
Рассмотрим произвольное <tex>y \in R(A)</tex>, пусть <tex>y = Ax</tex> и <tex>y = Ax'</tex>.
Строка 213: Строка 218:
 
Рассмотрим <tex>E/_{\operatorname{Ker} A}</tex>, <tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to F</tex>, <tex>\widetilde{A}([x]) = Ax</tex>.
 
Рассмотрим <tex>E/_{\operatorname{Ker} A}</tex>, <tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to F</tex>, <tex>\widetilde{A}([x]) = Ax</tex>.
  
<tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)</tex> — биекция, <tex>R(A)</tex> — замкнуто, <tex>F</tex> — банахово, поэтому <tex>R(A)</tex> — также банахово как подпространство в <tex>F</tex>.
+
<tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)</tex> — биекция, <tex>R(A)</tex> — замкнуто, <tex>F</tex> — банахово, поэтому <tex>R(A)</tex> — также банахово как подпространство в <tex>F</tex>. Введем норму для <tex>[x] \in E/_{\operatorname{Ker} A}</tex> как <tex>\|[x]\| = \inf\limits_{x\in [x]} \|x\|</tex>.
  
Тогда по теореме Банаха об обратном операторе существует линейный ограниченный оператор <tex>\widetilde{A}^{-1}</tex>, <tex>\| \widetilde{A}^{-1} \| \le m \|y\| \le 2m \|y\|</tex> {{TODO|t=а последнее неравенство зачем?}}.
+
Покажем, что <tex>\widetilde{A}</tex> — ограничен: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\|</tex>. Для этого перейдем от классов эквивалентности к их представителям. Так как <tex>\|[x]\| = \inf\limits_{x \in [x]} \|x\| = 1</tex>, найдется <tex>x \in [x]</tex>, такой, что <tex>\|x\| \le 2</tex> (по определению инфимума), возьмем его в качестве представителя (мы можем это сделать, так как значение <tex>Ax</tex> одно и тоже для любого <tex>x\in[x]</tex>). Тогда: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\| \le \sup\limits_{\|x\| \le 2} \|Ax\| \le \sup\limits_{\|y\| \le 1} \|A(2 y)\| \le 2 \sup\limits_{\|y\| \le 1} \|Ay\| = 2 \|A\|</tex>, так как <tex>\|A\|</tex> был ограничен, <tex>\widetilde{A}</tex> тоже окажется ограниченным.
  
Если <tex>\xi \in E/_{\operatorname{Ker} A}, \xi = [x]</tex>, то <tex>\|\xi\| = \inf\limits_{x\in \xi} \|x\|</tex>.
+
Тогда по [[Теорема Банаха об обратном операторе#Теорема Банаха о гомеоморфизме|теореме Банаха об гомеоморфизме]] существует линейный ограниченный оператор <tex>\widetilde{A}^{-1}</tex>, <tex>\| \widetilde{A}^{-1}(y) \| \le m \|y\| < 2m \|y\|</tex>. Замечание: строгое неравенство нам нужно для того, чтобы обеспечить существование такого <tex> x' \in A^{-1}(y) </tex>, что <tex> \| x' \| < 2m\| y \| </tex>.
  
 
<tex>\widetilde{A}^{-1}(y) = \{ x: y = Ax \}</tex>
 
<tex>\widetilde{A}^{-1}(y) = \{ x: y = Ax \}</tex>

Текущая версия на 19:13, 4 сентября 2022

Эта статья находится в разработке!
<<>>

Все рассматриваемые далее пространства считаем Банаховыми.


Определение:
[math] E^* [/math] — множество линейных непрерывных функционалов над [math] E [/math], его называют пространством, сопряженным к [math] E [/math].
Аналогично, [math] E^{**} [/math] — пространство, сопряженное к [math] E^* [/math].


Естественное вложение

Утверждение:
Между [math] E [/math] и [math] E^{**} [/math] существует так называемый естественный изоморфизм, сохраняющий норму точки.
[math]\triangleright[/math]

Введем [math] F_x [/math] следующим образом: [math]\forall x \in E : F_x (f) = f(x), f \in E^{*} [/math].

[math] F_x : E^{*} \to \mathbb{R} [/math] — функционал, заданный на [math]E^{*}[/math], то есть [math] F_x \in E^{**} [/math].

Тогда само [math] F [/math] отображает [math] E [/math] в [math] E^{**} [/math].

[math] F [/math] линейно: [math] F_{\alpha x_1 + \beta x_2} = \alpha F_{x_1} + \beta F_{x_2} [/math].

[math] | F_x(f) | = |f(x)| \le \| f \| \| x \| [/math], откуда [math] \| F_x \| \le \| x \| [/math].

С другой стороны, по следствию из теоремы Хана-Банаха, для любого [math] x_0 \in E [/math] существует [math] f_0 \in E^* [/math], такое, что выполняются два условия:

  1. [math] f_0(x_0) = \| x_0 \| [/math]
  2. [math] \| f_0 \| = 1 [/math].

[math] | F_{x_0} (f_0) | = f_0 (x_0) = \| x_0 \|, \| f_0 \| = 1 [/math], потому получаем, что [math] \| F_{x_0} \| \ge \| x_0 \| \implies \| F_{x_0} \| = \| x_0 \| [/math].

Значит, получившееся преобразование [math] x \mapsto F_x [/math] — изометрия, [math] \| x \| = \| F_x \| [/math], получили естественное вложение [math] E [/math] в [math] E^{**} [/math].
[math]\triangleleft[/math]


Определение:
[math] E [/math] называется рефлексивным, если [math] E [/math] будет совпадать с [math] E^{**} [/math] при таком отображении.


Например, гильбертово пространство [math] H [/math] рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).

[math] C[0, 1] [/math] не является рефлексивным.

Сопряженный оператор

Пусть оператор [math] A [/math] действует из [math] E [/math] в [math] F [/math], и функционал [math] \varphi [/math] принадлежит [math] F^* [/math].

Рассмотрим [math] f(x) = \varphi (Ax), | f(x) | \le \| \varphi \| \| A \| \| x \| [/math].

Получили новый функционал [math] f [/math], принадлежащий [math] E^* [/math]. [math] \varphi \mapsto \varphi A [/math].

[math] \varphi A = A^* (\varphi), A^* : F^* \to E^* [/math]. [math] A^* [/math]сопряженный оператор к [math] A [/math].

Теорема:
Если [math] A [/math] — линейный ограниченный оператор, то [math] \| A^* \| = \| A \| [/math].
Доказательство:
[math]\triangleright[/math]

Возьмем [math] x \in E, \varphi \in F^* [/math].

[math] | A^* (\varphi, x) | = | \varphi (Ax) | \le \| A \| \| \varphi \| \| x \| [/math].

Получили, что [math] \| A^* (\varphi) \| \le \| A \| \| \varphi \| [/math], откуда [math] \| A^* \| \le \| A \| [/math].

Для доказательства в обратную сторону используем следствие из теоремы Хана-Банаха:

По определению нормы оператора: [math] \forall \varepsilon \gt 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon \lt \| Ax \| [/math].

[math] Ax \in F [/math], по следствию из теоремы Хана-Банаха подберем [math] \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| [/math].

[math] | A^*(\varphi_0, x) | = | \varphi_0(Ax) | = \| Ax \| \gt \| A \| - \varepsilon [/math].

[math] | A^*(\varphi_0, x) | \le \| A^*(\varphi_0) \| \| x \| = \| A^*(\varphi_0) \| \le \| A^* \| \| \varphi_0 \| = \| A^* \| [/math].

Соединяя эти два неравенства, получаем, что [math] \forall \varepsilon \gt 0: \| A^* \| \gt \| A \| - \varepsilon [/math].

Устремляя [math] \varepsilon [/math] к нулю, получаем, что [math] \| A^* \| \ge \| A \| [/math], и, окончательно, [math] \| A^* \| = \| A \| [/math].
[math]\triangleleft[/math]

Примеры сопряженных операторов

Возьмем любое гильбертово пространство [math] H [/math], [math] A : H \to H [/math].

[math] \forall \varphi \in H^* [/math] по теореме Рисса об общем виде линейного функционала в [math] H [/math] существует единственный [math] z : \varphi (y) = \langle y, z \rangle, \| \varphi \| = \| z \| [/math].


Поскольку [math] x \mapsto \varphi (Ax) [/math] также является линейным функционалом [math] H \to H [/math], то [math] \varphi (Ax) = \langle Ax, z \rangle = \langle x, y \rangle [/math], где [math] y [/math] не зависит от [math] x [/math].

Имеем отображение [math] z \mapsto y [/math], тогда [math] y = A^*(z) [/math], и окончательно:

[math] \langle Ax, z \rangle = \langle x, A^*z \rangle [/math].

В гильбертовом пространстве [math] H [/math] сопряженный оператор — тот оператор, который позволяет писать равенство выше.


Определение:
Оператор [math] A [/math] в гильбертовом пространстве называется самосопряженным, если [math] A = A^* [/math]


В случае [math] \mathbb{R}^n [/math] (частный случай [math] H [/math]) оператор [math] A : \mathbb{R}^n \to \mathbb{R}^n [/math] представляет собой матрицу размером [math] n \times n [/math]. Сопряженный к [math] A [/math] оператор получается транспонированием соответствующей матрицы: [math] A^* = A^T [/math]. Для симметричной матрицы [math] A [/math] получается [math] A^* = A^T = A [/math], то есть, если [math] A [/math] — симметричная матрица, то [math] A [/math] — самосопряженный оператор.

Рассмотрим теперь пространство [math] E = L_p [0, 1] [/math].

Пусть [math] K(u, v) : [0, 1] \times [0, 1] \to \mathbb{R} [/math] — непрерывная функция на [math] [0, 1] \times [0, 1] [/math], [math] x \in E [/math].

Интегральный оператор [math] A [/math], действующий из [math] L_p [0, 1] [/math] в [math] L_p [0, 1] [/math] определяется так: [math] A(x, s) = (Ax)(s) = \int\limits_0^1 K(s, t) x(t) dt [/math]. [math] Ax \in E [/math].

Построим сопряженный оператор:

По теореме об общем виде линейного функционала в [math] L_p [/math],

[math] \forall \varphi \in E^*, x \in E: \varphi(x) = \int\limits_0^1 y(t) x(t) dt, y \in L_q [/math], где [math] \frac 1p + \frac 1q = 1 [/math] ([math] p [/math] и [math] q [/math] называются сопряженными показателями).

[math] L_p^* = L_q [/math].

[math] A^*(\varphi, x) = \varphi (Ax) = \int\limits_0^1 y(s) (Ax)(s) ds = \int\limits_0^1 y(s) (\int\limits_0^1 K(s, t) x(t) dt) ds = [/math] (по теореме Фубини поменяем порядок интегрирования) [math] = \int\limits_0^1 ( \int\limits_0^1 K(s, t) y(s) ds) x(t) dt [/math]

Получили, что [math] A^*(\varphi, x) = \int\limits_0^1 ( \int\limits_0^1 K(s, t) y(s) ds) x(t) dt [/math]. Обозначим [math] z(t) = \int\limits_0^1 K(s, t) y(s) ds [/math], тогда [math] A^* (\varphi) \equiv z [/math], аналогично [math] \varphi \equiv y [/math].

[math] A^* [/math] — интегральный оператор из [math] L_q [/math], имеющий ядро [math] K^*(s, t) = K(t, s) [/math]. В частности, если ядро симметрично ([math] K(s, t) = K(t, s) [/math]) и [math] p = q = 2 [/math], то [math] A = A^* [/math].

Ортогональное дополнение

Важное значение имеет ортогональное дополнение (в любом нормированном пространстве):


Определение:
Пусть [math] E [/math] — НП, [math] S \subset E^* [/math].

[math] S^{\bot} = \{ x \in E \mid \forall f \in S: f(x) = 0 \} [/math]ортогональное дополнение [math] S [/math].

Аналогично, если [math] T \subset E [/math], то [math] T^{\bot} = \{ f \in E^* \mid \forall x \in T: f(x) = 0 \} [/math].


Утверждение:
[math] \{ 0 \} = (E^*)^{\bot}, \{ \mathbf{0} \} = E^{\bot} [/math].
[math]\triangleright[/math]

Оба включения [math] \subset [/math] очевидны по определению. В обратную сторону:

  1. Пусть [math] x \in (E^*)^{\bot} [/math], тогда [math] \forall f \in E^*: f(x) = 0 [/math]. Предположим, что [math] x \neq 0 [/math], тогда по следствию из теоремы Хана-Банаха, для такого [math]x[/math], найдется функционал [math]f: f(x) = \| x \| \neq 0 [/math], получили противоречие, что [math] x \in (E^*)^{\bot} [/math].
  2. Пусть [math] f \in E^\bot [/math], тогда [math] \forall x \in E: f(x) = 0[/math]. Тогда [math]f[/math] — нулевой функционал по определению.
[math]\triangleleft[/math]

Теоремы о множестве значений оператора

Теорема 1

Теорема:
[math] A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp [/math].
Доказательство:
[math]\triangleright[/math]

[math]\subset[/math]:

[math]\forall \varphi \in \operatorname{Ker}A^*[/math], [math]A^* \varphi = \mathbf{0}[/math].

Пусть [math]y \in R(A) [/math], тогда [math] y = Ax [/math].

[math] \varphi (y) = \varphi(A x) = A^*(\varphi, x) = 0 [/math], следовательно, [math] R(A)\subset(\operatorname{Ker}A^*)^\perp[/math].

Теперь, пусть [math]y \in \operatorname{Cl} R(A)[/math], тогда [math] y = \lim y_n, y_n \in R(A)[/math].

[math]\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \varphi(y) = 0[/math], и [math]\operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp[/math]

[math]\supset[/math]:

Надо показать, что [math]y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)[/math]. Пусть это не так: [math] y \notin \operatorname{Cl} R(A)[/math].

Рассмотрим [math] F_1 = \left\{ z + ty \mid z \in \operatorname{Cl}(R(A)), y \notin \operatorname{Cl}(R(A)), t \in \mathbb{R} \right\} [/math]. [math]F_1[/math] — линейное множество в силу линейности [math]\operatorname{Cl}(R(A))[/math].

Покажем, что [math]F_1[/math] -- подпространство [math]F[/math]. Для этого нам осталось проверить замкнутость [math]F_1[/math]:

Пусть [math]z_n+t_{n}y \to u = z + ty[/math], хотим убедиться в том, что [math]u \in F_1[/math].

Если [math] |t_{n}| \le const [/math], то выберем [math]t_{n_k}[/math], стремящееся к какому-то [math]t[/math]. Из [math]z_n+t_{n}y \to u, t_{n_k}y \to ty [/math] получаем [math] z_n \to z \in \operatorname{Cl}(R(A))[/math].

Если допустить, что [math]t_{n_k} \to \infty[/math]:

[math]z_{n_k}+t_{n_k}y \to u[/math]. [math]z_{n_k}/t_{n_k} + y \to 0 \implies z_{n_k}/t_{n_k} \to -y \implies -y \in \operatorname{Cl}(R(A)) \implies y \in \operatorname{Cl}(R(A))[/math] — противоречие.

Таким образом, [math]\operatorname{Cl}(F_1) = F_1[/math].

Построим на [math]F_1[/math] фунционал [math]\varphi_0 : \varphi_0(z+ty) = t [/math], [math] \varphi_0(z) = 0[/math]. Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением непрерывности его можно продолжить на [math]F: \widetilde{\varphi_0} \in F^*[/math], причем так, что [math]\widetilde{\varphi_0}\mid _{F_1} = \varphi_0[/math].

Рассмотрим значение [math]\widetilde{\varphi_0}(y)[/math]:

  • С одной стороны, [math]\widetilde{\varphi_0}(y) = \varphi_0(y) = \varphi_0(0 + 1 y) = 1[/math]
  • С другой стороны, [math]y \in (\operatorname{Ker}A^*)^\perp[/math], а значит, на любом функционале из ядра [math]A^*[/math], в том числе, и на [math]\widetilde{\varphi_0}[/math], должно выполняться [math]\widetilde{\varphi_0}(y) = 0[/math]
Получили противоречие, следовательно, [math] y \in \operatorname{Cl}(R(A))[/math].
[math]\triangleleft[/math]

Теорема 2

Теорема:
[math] A \in \mathcal{L}(E,F),~R(A) = \operatorname{Cl} R(A) \implies R(A^*) = (\operatorname{Ker}A )^\perp [/math].
Доказательство:
[math]\triangleright[/math]

1) [math]f \in R(A^*) \implies f = \varphi A , \varphi \in F^*[/math].

Рассмотрим [math] x \in (\operatorname{Ker}A). [/math] [math]f(x) = \varphi(Ax) = \varphi(0) = 0 \implies R(A^*) \subset (\operatorname{Ker}A )^\perp[/math].

2) Докажем теперь обратное включение:

[math](\operatorname{Ker}A )^\perp[/math] — набор таких [math]f[/math], что если [math]Ax=0[/math], то [math]f(x)=0[/math].

Надо показать, что [math]f \in R(A^*)[/math], т.е. проверить, что [math]f = A^* \varphi = \varphi A[/math].

Если найдем [math]\varphi[/math], заданный на [math]R(A)[/math], то сможем продолжить его на все [math]F[/math] по теореме Хана-Банаха.

Рассмотрим произвольное [math]y \in R(A)[/math], пусть [math]y = Ax[/math] и [math]y = Ax'[/math].

Тогда [math]A(x - x') = 0[/math], то есть [math]x - x' \in \operatorname{Ker} A[/math], [math]f(x - x') = 0[/math], и [math]f(x) = f(x')[/math], то есть, значение функционала не зависит от того, какой конкретно [math]x[/math] (при [math]Ax = y[/math]) был выбран.

Тогда можно взять [math]\varphi(y) = f(x)[/math], где [math]y = Ax[/math] — линейный функционал, [math]f = \varphi A[/math]. Осталось проверить ограниченность [math]\varphi[/math] на [math]R(A)[/math].

Рассмотрим [math]E/_{\operatorname{Ker} A}[/math], [math]\widetilde{A} : E/_{\operatorname{Ker} A} \to F[/math], [math]\widetilde{A}([x]) = Ax[/math].

[math]\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)[/math] — биекция, [math]R(A)[/math] — замкнуто, [math]F[/math] — банахово, поэтому [math]R(A)[/math] — также банахово как подпространство в [math]F[/math]. Введем норму для [math][x] \in E/_{\operatorname{Ker} A}[/math] как [math]\|[x]\| = \inf\limits_{x\in [x]} \|x\|[/math].

Покажем, что [math]\widetilde{A}[/math] — ограничен: [math]\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\|[/math]. Для этого перейдем от классов эквивалентности к их представителям. Так как [math]\|[x]\| = \inf\limits_{x \in [x]} \|x\| = 1[/math], найдется [math]x \in [x][/math], такой, что [math]\|x\| \le 2[/math] (по определению инфимума), возьмем его в качестве представителя (мы можем это сделать, так как значение [math]Ax[/math] одно и тоже для любого [math]x\in[x][/math]). Тогда: [math]\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\| \le \sup\limits_{\|x\| \le 2} \|Ax\| \le \sup\limits_{\|y\| \le 1} \|A(2 y)\| \le 2 \sup\limits_{\|y\| \le 1} \|Ay\| = 2 \|A\|[/math], так как [math]\|A\|[/math] был ограничен, [math]\widetilde{A}[/math] тоже окажется ограниченным.

Тогда по теореме Банаха об гомеоморфизме существует линейный ограниченный оператор [math]\widetilde{A}^{-1}[/math], [math]\| \widetilde{A}^{-1}(y) \| \le m \|y\| \lt 2m \|y\|[/math]. Замечание: строгое неравенство нам нужно для того, чтобы обеспечить существование такого [math] x' \in A^{-1}(y) [/math], что [math] \| x' \| \lt 2m\| y \| [/math].

[math]\widetilde{A}^{-1}(y) = \{ x: y = Ax \}[/math]

[math]\|\widetilde{A}^{-1}(y)\| = \inf\limits_{x\in \widetilde{A}^{-1}(y)} \|x\| \lt 2m \|y\| [/math], следовательно, существует [math] x' = A^{-1}y, \|x'\| \lt 2m\|y\|[/math].

[math] \|\varphi(y)\| = \|f(x')\| \le \|f\|\|x'\| \lt (2m\|f\|)\|y\| [/math], то есть, получили ограниченность [math] \varphi [/math], теорема доказана.
[math]\triangleleft[/math]

Эти две теоремы являются наиболее общей формой записи условий разрешимости операторных уравнений.

Смысл: рассмотрим уравнение [math]Ax = y[/math], где [math]y[/math] — дано. Для того, чтобы понять, разрешимо ли уравнение, нужно проверить, что [math]y \in R(A)[/math]. В общем случае, не существует способа это сделать, но можно ограничиться проверкой [math]R(A) = \operatorname{Cl} R(A)[/math], и тогда [math]R(A) = (\operatorname{Ker}A^*)^\bot[/math], сопряженный оператор можно построить, ядро поддается конструктивному описанию: [math]y \in R(A) \iff y \perp \operatorname{Ker} A^*[/math].

Например, [math]A: \mathbb{R}^m \to \mathbb{R}^n[/math], [math]A^* = A^\top : \mathbb{R}^n \to \mathbb{R}^m[/math]. [math]R(A) = \operatorname{Cl} R(A)[/math], [math]Ax = y[/math], [math]y[/math] — дано. Надо смотреть [math]y \perp \operatorname{Ker} A^*[/math], то есть [math]A^\top y = 0[/math].

В следующих параграфах мы введем класс бесконечномерных операторов, для которых [math]R(A)[/math] — замкнуто, в частности, в этот класс входят интегральные операторы.