Теория Гильберта-Шмидта — различия между версиями
AVasilyev (обсуждение | вклад) (→Критерии вхождения в спектр и резольвентное множество) |
м (rollbackEdits.php mass rollback) |
||
(не показано 7 промежуточных версий 4 участников) | |||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
− | + | [[Альтернатива Фредгольма — Шаудера|<<]][[О нелинейных операторных уравнениях|>>]] | |
__TOC__ | __TOC__ | ||
Строка 32: | Строка 32: | ||
}} | }} | ||
− | <tex>\langle \mathcal{A}x, x \rangle = \langle x, \mathcal{A}x \rangle </tex>, <tex>\langle \mathcal{A}x, x \rangle = \overline{\langle x, \mathcal{A}x \rangle} | + | <tex>\langle \mathcal{A}x, x \rangle = \langle x, \mathcal{A}x \rangle </tex>, <tex>\langle \mathcal{A}x, x \rangle = \overline{\langle x, \mathcal{A}x \rangle} \implies \langle \mathcal{A}x, x\rangle \in \mathbb{R}</tex>, так как если комплексное число совпадает со своим сопряжением, то его мнимая часть равна нулю. |
Рассмотрим <tex>\lambda = \mu + i\nu \in \mathbb{C}</tex>, <tex>\lambda \mathcal{I} - \mathcal{A} = (\mu\mathcal{I} - \mathcal{A}) + i\nu\mathcal{I}</tex>. | Рассмотрим <tex>\lambda = \mu + i\nu \in \mathbb{C}</tex>, <tex>\lambda \mathcal{I} - \mathcal{A} = (\mu\mathcal{I} - \mathcal{A}) + i\nu\mathcal{I}</tex>. | ||
− | <tex>\| (\lambda\mathcal{I}-\mathcal{A})x \|^2 = </tex> <tex>\langle (\lambda\mathcal{I}-\mathcal{A})x, (\lambda\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\langle (\mu\mathcal{I}-\mathcal{A})x+i\nu x, (\mu\mathcal{I}-\mathcal{A})x+i\nu x \rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2 + \langle(\mu\mathcal{I}-\mathcal{A})x, i\nu x\rangle + \langle i\nu x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> [<tex>\mu \in \mathbb{R}</tex>, <tex>\mathcal{A}</tex> | + | <tex>\| (\lambda\mathcal{I}-\mathcal{A})x \|^2 = </tex> <tex>\langle (\lambda\mathcal{I}-\mathcal{A})x, (\lambda\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\langle (\mu\mathcal{I}-\mathcal{A})x+i\nu x, (\mu\mathcal{I}-\mathcal{A})x+i\nu x \rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2 + \langle(\mu\mathcal{I}-\mathcal{A})x, i\nu x\rangle + \langle i\nu x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> [<tex>\mu \in \mathbb{R}</tex>, <tex>\mathcal{A}</tex> — самосопряжённый |
+ | <tex> (\mu\mathcal{I}-\mathcal{A})^* = (\mu\mathcal{I}-\mathcal{A})</tex>] <tex> = \|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2 + (-i\nu)\langle (\mu\mathcal{I}-\mathcal{A})x, x\rangle + i\nu\langle x, (\mu\mathcal{I}-\mathcal{A})x\rangle = </tex> <tex>\|(\mu\mathcal{I}-\mathcal{A})x\|^2 + |\nu|^2\cdot\|x\|^2</tex> | ||
Итого: <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|</tex>. | Итого: <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|</tex>. | ||
Строка 42: | Строка 43: | ||
{{Утверждение | {{Утверждение | ||
− | |statement=Если <tex>\mathcal{A}</tex> | + | |statement=Если <tex>\mathcal{A}</tex> — самосопряжённый, а <tex>\lambda \in \mathbb{C}</tex>, то <tex>\mathcal{H} = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) \oplus \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>. |
|proof=Доказательство разбивается на два случая: <tex>\lambda \in \mathbb{R}</tex> и <tex>\lambda \notin \mathbb{R}</tex> | |proof=Доказательство разбивается на два случая: <tex>\lambda \in \mathbb{R}</tex> и <tex>\lambda \notin \mathbb{R}</tex> | ||
* Случай 1. <tex>\lambda \in \mathbb{R}</tex>: | * Случай 1. <tex>\lambda \in \mathbb{R}</tex>: | ||
− | <tex>\lambda \in \mathbb{R} \ | + | <tex>\lambda \in \mathbb{R} \implies (\lambda\mathcal{I}-\mathcal{A})^* = \lambda\mathcal{I}-\mathcal{A}</tex> |
<tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^\bot</tex> | <tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^\bot</tex> | ||
Строка 53: | Строка 54: | ||
* Случай 2. <tex>\lambda \notin \mathbb{R}</tex>: | * Случай 2. <tex>\lambda \notin \mathbb{R}</tex>: | ||
− | из неравенства <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> при <tex>x \ne 0</tex> вытекает <tex>\operatorname{Ker}( | + | из неравенства <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> при <tex>x \ne 0</tex> вытекает <tex>\operatorname{Ker}(\lambda \mathcal{I}-\mathcal{A}) = \{0\}</tex>, так как для <tex>\lambda \notin \mathbb R</tex>, <tex>|\nu| \ne 0</tex>. |
<tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \mathcal{H}</tex>. | <tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \mathcal{H}</tex>. | ||
Строка 63: | Строка 64: | ||
{{Теорема | {{Теорема | ||
− | |statement = Если <tex>\mathcal{A}</tex> | + | |statement = Если <tex>\mathcal{A}</tex> — самосопряженный, то <tex> \sigma (\mathcal{A}) \subset \mathbb{R} </tex>. |
|proof = Проверим, что если <tex> \operatorname{Im} \lambda \ne 0</tex>, то <tex>\lambda \in \rho(\mathcal{A})</tex>. | |proof = Проверим, что если <tex> \operatorname{Im} \lambda \ne 0</tex>, то <tex>\lambda \in \rho(\mathcal{A})</tex>. | ||
<tex>\lambda = \mu + i\nu</tex>, <tex>\nu\ne0</tex>, <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> | <tex>\lambda = \mu + i\nu</tex>, <tex>\nu\ne0</tex>, <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> | ||
Строка 70: | Строка 71: | ||
С другой стороны, неравенство <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\|\ge|\nu|\cdot\|x\|</tex> даёт априорную оценку <tex>y=(\lambda\mathcal{I}-\mathcal{A})x</tex>, откуда следует, что | С другой стороны, неравенство <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\|\ge|\nu|\cdot\|x\|</tex> даёт априорную оценку <tex>y=(\lambda\mathcal{I}-\mathcal{A})x</tex>, откуда следует, что | ||
− | <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> | + | <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> — замкнуто. |
Значит, <tex>\mathcal{H} = R(\lambda\mathcal{I}-\mathcal{A})</tex> | Значит, <tex>\mathcal{H} = R(\lambda\mathcal{I}-\mathcal{A})</tex> | ||
− | <tex>\lambda\mathcal{I}-\mathcal{A}</tex> | + | <tex>\lambda\mathcal{I}-\mathcal{A}</tex> — биективен на <tex>\mathcal{H}</tex>. <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|</tex> гарантирует, что обратный оператор ограничен, и, как следствие, непрерывен. Значит, <tex>\lambda \in \rho(\mathcal{A})</tex> |
}} | }} | ||
Строка 81: | Строка 82: | ||
{{Теорема | {{Теорема | ||
− | |statement=Пусть <tex>\mathcal{A}</tex> | + | |statement=Пусть <tex>\mathcal{A}</tex> — самосопряжённый оператор. Тогда |
1. <tex>\lambda \in \rho(\mathcal{A}) \iff \exists m > 0 : \forall x \in \mathcal{H} : \|(\lambda\mathcal{I}-\mathcal{A})x\| \ge m\|x\|</tex> | 1. <tex>\lambda \in \rho(\mathcal{A}) \iff \exists m > 0 : \forall x \in \mathcal{H} : \|(\lambda\mathcal{I}-\mathcal{A})x\| \ge m\|x\|</tex> | ||
2. <tex>\lambda \in \sigma(\mathcal{A}) \iff \exists x_n : \|x_n\| = 1 : \|(\lambda\mathcal{I}-\mathcal{A})x_n\| \to 0 </tex> | 2. <tex>\lambda \in \sigma(\mathcal{A}) \iff \exists x_n : \|x_n\| = 1 : \|(\lambda\mathcal{I}-\mathcal{A})x_n\| \to 0 </tex> | ||
Строка 88: | Строка 89: | ||
Докажем первый пункт | Докажем первый пункт | ||
− | <tex>\ | + | <tex>\implies</tex>: <tex>\lambda \in \rho(\mathcal{A})</tex>, то есть резольвентный оператор определен. |
− | <tex>\left\| | + | <tex>\left\| (\lambda I - A)^{-1} (\lambda I - A) x\right\| \le \left\| (\lambda I - A)^{-1} \right\| \| (\lambda I - A) x\|</tex> |
− | Возьмем <tex>m=\frac{1}{\left\| | + | Возьмем <tex>m=\frac{1}{\left\| (\lambda I - A)^{-1} \right\|}</tex>, тогда: |
− | <tex>\| (\lambda I - A) x\| \ge m \left\| | + | <tex>\| (\lambda I - A) x\| \ge m \left\| (\lambda I - A)^{-1} (\lambda I - A) x\right\| \ge m \|x\|</tex> |
<tex>\Longleftarrow</tex>: Существование резольвентного оператора, определенного на <tex> R(\lambda\mathcal{I}-\mathcal{A}) </tex> следует из [[Теорема Банаха об обратном операторе#invlb|одной из теорем об обратных операторах]]. Покажем, что <tex> R(\lambda \mathcal{I} - \mathcal{A}) = \mathcal{H} </tex>. По одному из предыдущих утверждений, <tex>\mathcal{H} = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) \oplus \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>. Поскольку <tex> \|(\lambda\mathcal{I}-\mathcal{A})x\| \ge m\|x\| </tex>, то <tex> \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) = \{ 0 \} </tex>. Так как оператор <tex> \lambda\mathcal{I}-\mathcal{A} </tex> допускает, по условию, априорную оценку решений, то <tex> R(\lambda\mathcal{I}-\mathcal{A}) = \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>, откуда следует, что резольвентный оператор непрерывен и определен на всем <tex> \mathcal{H} </tex>. | <tex>\Longleftarrow</tex>: Существование резольвентного оператора, определенного на <tex> R(\lambda\mathcal{I}-\mathcal{A}) </tex> следует из [[Теорема Банаха об обратном операторе#invlb|одной из теорем об обратных операторах]]. Покажем, что <tex> R(\lambda \mathcal{I} - \mathcal{A}) = \mathcal{H} </tex>. По одному из предыдущих утверждений, <tex>\mathcal{H} = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) \oplus \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>. Поскольку <tex> \|(\lambda\mathcal{I}-\mathcal{A})x\| \ge m\|x\| </tex>, то <tex> \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) = \{ 0 \} </tex>. Так как оператор <tex> \lambda\mathcal{I}-\mathcal{A} </tex> допускает, по условию, априорную оценку решений, то <tex> R(\lambda\mathcal{I}-\mathcal{A}) = \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>, откуда следует, что резольвентный оператор непрерывен и определен на всем <tex> \mathcal{H} </tex>. | ||
Строка 105: | Строка 106: | ||
{{Определение | {{Определение | ||
|definition=<tex>m_- = \inf\limits_{\|x\| = 1} \langle \mathcal{A}x, x\rangle</tex> | |definition=<tex>m_- = \inf\limits_{\|x\| = 1} \langle \mathcal{A}x, x\rangle</tex> | ||
+ | |||
<tex>m_+ = \sup\limits_{\|x\| = 1} \langle \mathcal{A}x, x \rangle</tex> | <tex>m_+ = \sup\limits_{\|x\| = 1} \langle \mathcal{A}x, x \rangle</tex> | ||
Строка 130: | Строка 132: | ||
<tex>(\lambda - m_+) \cdot \|x\|^2 =</tex> <tex>(\lambda - m_+) \langle x, x \rangle =</tex> <tex>\langle \lambda x, x\rangle - \langle m_+x, x\rangle \le </tex> <tex>\langle \lambda x, x \rangle - \langle \mathcal{A}x, x \rangle = </tex> <tex>\langle (\lambda\mathcal{I}-\mathcal{A})x, x\rangle \le</tex> [неравенство Шварца] <tex>\le \|(\lambda\mathcal{I}-\mathcal{A})x\| \cdot \|x\|</tex> | <tex>(\lambda - m_+) \cdot \|x\|^2 =</tex> <tex>(\lambda - m_+) \langle x, x \rangle =</tex> <tex>\langle \lambda x, x\rangle - \langle m_+x, x\rangle \le </tex> <tex>\langle \lambda x, x \rangle - \langle \mathcal{A}x, x \rangle = </tex> <tex>\langle (\lambda\mathcal{I}-\mathcal{A})x, x\rangle \le</tex> [неравенство Шварца] <tex>\le \|(\lambda\mathcal{I}-\mathcal{A})x\| \cdot \|x\|</tex> | ||
− | Итого: <tex>(\lambda-m_+)\|x\| \le \|(\lambda\mathcal{I}-\mathcal{A})x\| \ | + | Итого: <tex>(\lambda-m_+)\|x\| \le \|(\lambda\mathcal{I}-\mathcal{A})x\| \implies \lambda \in \rho(\mathcal{A})</tex> |
'''Пункт 2.''' Докажем, что <tex>m_+ \in \sigma(\mathcal{A})</tex> | '''Пункт 2.''' Докажем, что <tex>m_+ \in \sigma(\mathcal{A})</tex> | ||
Строка 169: | Строка 171: | ||
{{Утверждение | {{Утверждение | ||
− | |statement=Если <tex>\mathcal{A}</tex> | + | |statement=Если <tex>\mathcal{A}</tex> — самосопряжённый оператор, то <tex>r_\sigma(\mathcal{A}) = \|\mathcal{A}\|</tex> |
|proof=Ранее мы доказывали, что <tex>r_\sigma(\mathcal{A}) = \lim\limits_{n\to\infty} \sqrt[n]{\|\mathcal{A}^n\|}</tex> | |proof=Ранее мы доказывали, что <tex>r_\sigma(\mathcal{A}) = \lim\limits_{n\to\infty} \sqrt[n]{\|\mathcal{A}^n\|}</tex> | ||
Строка 187: | Строка 189: | ||
}} | }} | ||
− | Если <tex>\mathcal{A}</tex> | + | Если <tex>\mathcal{A}</tex> — компактный, то <tex>\sigma(\mathcal{A})</tex> состоит только из счётного числа собственных чисел <tex>\lambda_i</tex>. Обозначим за <tex>M_{\lambda_i} </tex> собственные подпространства. В силу самосопряжённости, <tex>M_{\lambda_i} \perp M_{\lambda_j}</tex>. |
Собственные подпространства конечномерны (<tex>\dim M_\lambda < +\infty</tex>). Можно считать, что в каждом из них определён ортонормированный базис. | Собственные подпространства конечномерны (<tex>\dim M_\lambda < +\infty</tex>). Можно считать, что в каждом из них определён ортонормированный базис. | ||
Строка 195: | Строка 197: | ||
{{Теорема | {{Теорема | ||
|author=Гильберт, Шмидт | |author=Гильберт, Шмидт | ||
− | |statement=Если <tex>\mathcal{A}</tex> | + | |statement=Если <tex>\mathcal{A}</tex> — самосопряжённый компактный оператор в гильбертовом пространстве <tex>\mathcal{H}</tex>, а <tex>M_{\lambda_i}</tex> — его (оператора) собственные подпространства, то <tex>\mathcal{H} = M_{\lambda_1} \oplus M_{\lambda_2} \oplus \cdots \oplus M_{\lambda_n} \oplus \cdots </tex> |
− | |proof=Обозначим за <tex>M = \bigoplus\limits_n M_{\lambda_n}</tex>, <tex>M^\bot</tex> | + | |proof=Обозначим за <tex>M = \bigoplus\limits_n M_{\lambda_n}</tex>, <tex>M^\bot</tex> — ортогональное дополнение <tex>M</tex> до <tex>\mathcal{H}</tex> (<tex>\mathcal{H} = M \oplus M^\bot</tex>). |
Нужно проверить, что <tex>M^\bot = \{0\}</tex> | Нужно проверить, что <tex>M^\bot = \{0\}</tex> | ||
Строка 203: | Строка 205: | ||
<tex>\forall x \in M_\lambda : \mathcal{A}x = \lambda x \in M_\lambda</tex> | <tex>\forall x \in M_\lambda : \mathcal{A}x = \lambda x \in M_\lambda</tex> | ||
− | Проверим, что <tex>\mathcal{A}(M^\bot) \subset M^\bot</tex>: <tex>\forall x \in M^\bot : \mathcal{A}x \perp</tex> любому <tex>M_\lambda | + | Проверим, что <tex>\mathcal{A}(M^\bot) \subset M^\bot</tex>: <tex>\forall x \in M^\bot : \mathcal{A}x \perp</tex> любому <tex>M_\lambda \implies \mathcal{A}x \in M^\bot</tex> |
<tex>y \in M_\lambda : \langle \mathcal{A}x, y\rangle = \langle x, \mathcal{A}y\rangle = \langle x, \lambda y \rangle = |\lambda|\langle x, y \rangle</tex>, <tex>x\in M^\bot</tex>, <tex>\langle x, y \rangle = 0</tex> | <tex>y \in M_\lambda : \langle \mathcal{A}x, y\rangle = \langle x, \mathcal{A}y\rangle = \langle x, \lambda y \rangle = |\lambda|\langle x, y \rangle</tex>, <tex>x\in M^\bot</tex>, <tex>\langle x, y \rangle = 0</tex> | ||
Строка 211: | Строка 213: | ||
Рассмотрим <tex>\mathcal{A}_0 = \mathcal{A}|_{M^\bot}</tex> | Рассмотрим <tex>\mathcal{A}_0 = \mathcal{A}|_{M^\bot}</tex> | ||
− | <tex>M^\bot</tex> | + | <tex>M^\bot</tex> — гильбертово пространство, <tex>\mathcal{A}_0</tex> — самосопряжённое, <tex>r_\sigma(\mathcal{A}_0) = \|\mathcal{A}_0\|</tex> |
− | Но все собственные числа <tex>\mathcal{A}</tex> задействованы в <tex>M_\lambda</tex> <tex>r_\sigma(\mathcal{A}_0) = 0 | + | Но все собственные числа <tex>\mathcal{A}</tex> задействованы в <tex>M_\lambda</tex> <tex>r_\sigma(\mathcal{A}_0) = 0 \implies \|\mathcal{A}_0\| = 0 \implies</tex> оператор тривиальный <tex>M^\bot = \operatorname{Ker} \mathcal{A}_0</tex> |
Если бы у <tex>\mathcal{A}</tex> было нетривиальное ядро, то оно стало бы собственным подпространством, значит, было бы задействовано в <tex>\bigoplus</tex>. Значит, <tex>\operatorname{Ker} \mathcal{A}_0 = \{0\}</tex>. | Если бы у <tex>\mathcal{A}</tex> было нетривиальное ядро, то оно стало бы собственным подпространством, значит, было бы задействовано в <tex>\bigoplus</tex>. Значит, <tex>\operatorname{Ker} \mathcal{A}_0 = \{0\}</tex>. | ||
}} | }} | ||
− | Если <tex>\mathcal{A}</tex> | + | === Разложение резольвенты === |
+ | |||
+ | Если <tex>\mathcal{A}</tex> — самосопряжённый компактный оператор, то ОНС базис <tex>\mathcal{H}</tex> можно построить из собственных векторов <tex>\varphi_1, \ldots \varphi_n, \ldots</tex>. | ||
Любой <tex>x \in \mathcal{H}</tex> можно разложить в ряд Фурье по свойствам гильбертова пространства. Значит, | Любой <tex>x \in \mathcal{H}</tex> можно разложить в ряд Фурье по свойствам гильбертова пространства. Значит, | ||
Строка 224: | Строка 228: | ||
<tex>\mathcal{A}x = \sum\limits_{n=1}^\infty \langle x, \varphi_n\rangle \mathcal{A}\varphi_n = \sum\limits_{n=1}^\infty \lambda_n \langle x, \varphi_n\rangle \varphi_n</tex>. | <tex>\mathcal{A}x = \sum\limits_{n=1}^\infty \langle x, \varphi_n\rangle \mathcal{A}\varphi_n = \sum\limits_{n=1}^\infty \lambda_n \langle x, \varphi_n\rangle \varphi_n</tex>. | ||
− | Получаем структуру сопряжённого компактного оператора: <tex>\lambda \in \rho(\mathcal{A})</tex> (<tex>\lambda\mathcal{I}-\mathcal{A}</tex> непрерывно обратим) <tex>\ | + | Получаем структуру сопряжённого компактного оператора: <tex>\lambda \in \rho(\mathcal{A})</tex> (<tex>\lambda\mathcal{I}-\mathcal{A}</tex> непрерывно обратим) <tex>\implies y = \sum\limits_{n=1}^\infty \langle y, \varphi_n\rangle \varphi_n</tex>, <tex>y = \lambda x - \mathcal{A}x</tex> |
<tex>\sum\limits_{n=1}^\infty \langle y, \varphi_n\rangle \varphi_n = \sum \lambda\langle x, \varphi_n\rangle\varphi_n - \sum\lambda_n\langle x, \varphi_n\rangle\varphi_n = \sum(\lambda-\lambda_n)\langle x, \varphi_n\rangle \varphi_n</tex>. | <tex>\sum\limits_{n=1}^\infty \langle y, \varphi_n\rangle \varphi_n = \sum \lambda\langle x, \varphi_n\rangle\varphi_n - \sum\lambda_n\langle x, \varphi_n\rangle\varphi_n = \sum(\lambda-\lambda_n)\langle x, \varphi_n\rangle \varphi_n</tex>. |
Текущая версия на 19:33, 4 сентября 2022
Содержание
В этом параграфе будем иметь дело с Гильбертовым пространством , но над полем .
- (над ):
- (над ):
В конечномерном пространстве
( ) скалярное произведение двух векторов определялось как .В
( ) же, .Комплексное сопряжение добавлено для того, чтобы выполнялась первая аксиома скалярного произведения:
: .Нас будут интересовать только линейные ограниченные операторы
.
Определение: |
Оператор | в гильбертовом пространстве называется самосопряжённым ( ), если .
Посмотрим, что же такое самосопряжённость для конечномерного оператора в . В линейный оператор представляет из себя матрицу .
Утверждение: |
Оператор самосопряжён . |
. |
, , так как если комплексное число совпадает со своим сопряжением, то его мнимая часть равна нулю.
Рассмотрим
, .[ , — самосопряжённый ]
Итого:
.
Утверждение: |
Если — самосопряжённый, а , то . |
Доказательство разбивается на два случая: и
из неравенства при вытекает , так как для , . . |
Теоремы о спектре самосопряженного оператора
Вещественность спектра
Теорема: |
Если — самосопряженный, то . |
Доказательство: |
Проверим, что если , то . , ,, (всюду плотно в ). С другой стороны, неравенство даёт априорную оценку , откуда следует, что — замкнуто.Значит, — биективен на . гарантирует, что обратный оператор ограничен, и, как следствие, непрерывен. Значит, |
Критерии вхождения в спектр и резольвентное множество
Теорема: |
Пусть — самосопряжённый оператор. Тогда
1. 2. |
Доказательство: |
Замечание: второе свойство означает, что спектр самосопряжённого оператора состоит из почти собственных чисел Докажем первый пункт : , то есть резольвентный оператор определен.
Возьмем , тогда:
одной из теорем об обратных операторах. Покажем, что . По одному из предыдущих утверждений, . Поскольку , то . Так как оператор допускает, по условию, априорную оценку решений, то , откуда следует, что резольвентный оператор непрерывен и определен на всем . Второй пункт — просто логическое отрицание первого. : Существование резольвентного оператора, определенного на следует из |
Выше мы убедились, что
Определение: |
|
Очевидно, что
, где :
Аналогично,
Теорема: |
Пусть — самосопряженный оператор. Тогда:
|
Доказательство: |
Пункт 1. Докажем, что из того, что следует, что . Аналогично докажем дляНужно проверять только Пусть . Проверим, что выполняется критерий вхождения в из предыдущей теоремы[неравенство Шварца] Итого: Пункт 2. Докажем, что Проверим критерий принадлежности спектру из предыдущей теоремы.
По определению подбираются ,
, Далее будем использовать обозначение .Так как , мгновенно проверяем, что удовлетворяет аксиомам скалярного произведения, а значит, для выполняется неравенство Шварца:
Надо:
Подставим , :
[по неравенству выше] . Первый множитель стремится к нулю. Проверив ограниченность второго, убедимся, что . |
Теорема о спектральном радиусе
Утверждение: |
Если — самосопряжённый оператор, то |
Ранее мы доказывали, что Если проверить, что , то, по предыдущему утверждению, теорема будет верна:Очевидно, достаточно проверить это утверждение только для . Остальное получится автоматически.
По самосопряжённости: [по неравенству Шварца] [ ] Итого: . Осталось доказать обратное неравенство. |
Если
— компактный, то состоит только из счётного числа собственных чисел . Обозначим за собственные подпространства. В силу самосопряжённости, .Собственные подпространства конечномерны (
). Можно считать, что в каждом из них определён ортонормированный базис.Теорема Гильберта-Шмидта
Теорема (Гильберт, Шмидт): |
Если — самосопряжённый компактный оператор в гильбертовом пространстве , а — его (оператора) собственные подпространства, то |
Доказательство: |
Обозначим за , — ортогональное дополнение до ( ).Нужно проверить, что Элементарно проверяется, что :Проверим, что : любому, , Значит, Рассмотрим — гильбертово пространство, — самосопряжённое, Но все собственные числа Если бы у задействованы в оператор тривиальный было нетривиальное ядро, то оно стало бы собственным подпространством, значит, было бы задействовано в . Значит, . |
Разложение резольвенты
Если
— самосопряжённый компактный оператор, то ОНС базис можно построить из собственных векторов .Любой
можно разложить в ряд Фурье по свойствам гильбертова пространства. Значит,.
Получаем структуру сопряжённого компактного оператора:
( непрерывно обратим) ,.
Можно приравнять коэффициенты:
.(в знаменателе нуля быть не может, потому что ).
.