Собственные векторы и собственные значения — различия между версиями
Slavian (обсуждение | вклад) (→Определения) |
м (rollbackEdits.php mass rollback) |
||
(не показано 11 промежуточных версий 5 участников) | |||
Строка 6: | Строка 6: | ||
|neat = | |neat = | ||
|definition= | |definition= | ||
− | Пусть <tex>\mathcal{A} | + | Пусть <tex>\mathcal{A}\colon X \to X</tex> - линейный оператор (ЛО)<br> |
− | <tex>x\ne | + | <tex>x\ne 0_x</tex> называется '''собственным вектором''' <tex>\mathcal{A}</tex>, если <tex>x \in L</tex>, где <tex>L</tex> {{---}} [[Инвариантные подпространства | инвариантное подпространство]] <tex>\mathcal{A}</tex> и <tex>\dim L = 1</tex> |
}} | }} | ||
Строка 14: | Строка 14: | ||
|neat = | |neat = | ||
|definition= | |definition= | ||
− | Пусть <tex>\mathcal{A} | + | Пусть <tex>\mathcal{A}\colon X \to X</tex> <br> <tex>x\ne 0_X</tex> называется '''собственным вектором''' <tex>\mathcal{A}</tex>, если существует <tex>\lambda \in F \colon \mathcal{A}x = \lambda x</tex> |
}} | }} | ||
Строка 24: | Строка 24: | ||
Предыдущие 2 определения эквивалентны. | Предыдущие 2 определения эквивалентны. | ||
|proof= | |proof= | ||
− | <math> (1) \Rightarrow (2) | + | <math> (1) \Rightarrow (2) \colon x \in L, \dim L=1 \Rightarrow \mathcal{A}x \in L \ (</math>т. к. <math>x \ne 0_X \Rightarrow</math> базис <math>L = \{x\}) \Rightarrow \mathcal{A}x=\lambda x</math> (единственным образом) <br> |
− | <tex> (1) \Leftarrow (2) | + | <tex> (1) \Leftarrow (2) \colon \exists \lambda: \mathcal{A}x = \lambda x \Rightarrow x \in</tex> одномерному подпространству <tex>L</tex>, где <tex>L =</tex> линейная оболочка <tex>\{x\}, \mathcal{A}x = \lambda x \in L</tex> |
}} | }} | ||
Строка 32: | Строка 32: | ||
|neat = | |neat = | ||
|definition= | |definition= | ||
− | <tex>\lambda</tex> в равенстве <tex> | + | <tex>\lambda</tex> в равенстве <tex>\mathcal{A}x = \lambda x</tex> называется '''собственным числом (собственным значением)''' ЛО <tex>\mathcal{A}</tex> |
}} | }} | ||
Строка 53: | Строка 53: | ||
'''Собственные векторы''', отвечающие различным '''собственным значениям''' образуют ЛНЗ набор | '''Собственные векторы''', отвечающие различным '''собственным значениям''' образуют ЛНЗ набор | ||
|proof= | |proof= | ||
− | 1) База: рассмотрим <tex>\lambda \leftrightarrow | + | 1) База: рассмотрим <tex>\lambda \leftrightarrow x_1 \ne 0_x\ \{x_1\}</tex> - ЛНЗ набор.<br> |
− | 2) <tex>\{ | + | 2) <tex>\{x_1,x_2, ... , x_{m-1}\} \leftrightarrow \{\lambda _1, ... \lambda _ {m-1} \}</tex> - ЛНЗ. |
− | Рассмотрим <tex>\{ | + | Рассмотрим <tex>\{x_1, ..., x_m \} </tex>- докажем, что тоже ЛНЗ. |
<tex>\sum\limits_{i=1}^m \alpha^i x_i = 0 </tex> | <tex>\sum\limits_{i=1}^m \alpha^i x_i = 0 </tex> | ||
Строка 65: | Строка 65: | ||
(1) - (2) : <tex>\alpha_1(\lambda_1 - \lambda_m)x_1 + ... + \alpha_{m-1}(\lambda_{m-1} - \lambda_m)x_{m-1} + 0_x = 0_x</tex> | (1) - (2) : <tex>\alpha_1(\lambda_1 - \lambda_m)x_1 + ... + \alpha_{m-1}(\lambda_{m-1} - \lambda_m)x_{m-1} + 0_x = 0_x</tex> | ||
− | По предположению индукции <tex>\{ | + | По предположению индукции <tex>\{x_1,x_2, ... , x_{m-1}\}</tex> - ЛНЗ <tex>\Rightarrow \alpha_1 (\lambda_1-\lambda_m)=0 ... \alpha_{m-1} (\lambda_{m-1} - \lambda_{m}) =0 </tex>, при этом все <tex>(\lambda_{i-1}-\lambda_m) \ne 0</tex> |
<tex>\Rightarrow </tex> все <tex>\alpha_i = 0</tex> <tex>\Rightarrow \sum\limits_{i=1}^m \alpha_i x_i = 0_x</tex> | <tex>\Rightarrow </tex> все <tex>\alpha_i = 0</tex> <tex>\Rightarrow \sum\limits_{i=1}^m \alpha_i x_i = 0_x</tex> | ||
− | <tex>\Rightarrow \alpha_m x_m = 0_x </tex>, где <tex>x_m \ne | + | <tex>\Rightarrow \alpha_m x_m = 0_x </tex>, где <tex>x_m \ne 0_x</tex> <tex>\Rightarrow \alpha_m=0</tex>, т.е. набор ЛНЗ. |
}} | }} | ||
Строка 78: | Строка 78: | ||
|about= | |about= | ||
|statement= | |statement= | ||
− | Множество всех собственных векторов, отвечающих одному и тому же собственному значению оператора <tex>A</tex>, образует подпространство пространства <tex>X</tex>. | + | Множество всех собственных векторов, отвечающих одному и тому же собственному значению оператора <tex>\mathcal{A}</tex>, образует подпространство пространства <tex>X</tex>. |
|proof= | |proof= | ||
− | + | 1) Если <tex>x</tex> {{---}} св, то и <tex> \alpha x</tex> {{---}} тоже св. | |
− | + | ||
+ | 2) Если <tex>x,y</tex> {{---}} св, то и <tex>x+y</tex> {{---}} тоже св. | ||
+ | |||
+ | Из 1 и 2 <tex>\Rightarrow</tex> что лемма доказана (по определению подпространства) | ||
+ | |||
}} | }} | ||
Текущая версия на 19:27, 4 сентября 2022
Основные теоремы и определения
Определения
Определение: |
Пусть называется собственным вектором , если , где — инвариантное подпространство и | - линейный оператор (ЛО)
Определение: |
Пусть называется собственным вектором , если существует |
Лемма: |
Предыдущие 2 определения эквивалентны. |
Доказательство: |
|
Определение: |
в равенстве называется собственным числом (собственным значением) ЛО |
Определение: |
Спектром | ЛО называется множество всех его собственных значений
// здесь мог быть пример, но думаю всем и так понятно
Свойства
Теорема: |
Собственные векторы, отвечающие различным собственным значениям образуют ЛНЗ набор |
Доказательство: |
1) База: рассмотрим
(1) (2) (1) - (2) : По предположению индукции - ЛНЗ , при этом всевсе , где , т.е. набор ЛНЗ. |
Лемма: |
Множество всех собственных векторов, отвечающих одному и тому же собственному значению оператора , образует подпространство пространства . |
Доказательство: |
1) Если — св, то и — тоже св.2) Если Из 1 и 2 — св, то и — тоже св. что лемма доказана (по определению подпространства) |
Определение: |
линейная оболочка все СВ называют собственным подпространством СЗ |
Лемма: |
Пусть L - линейная оболочка всех
Пусть Тогда - собственное подпространство X |
Доказательство: |
Сначала Вообще не понятно, зачем эта лемма, ибо она по определению. потом доказательство (так в конспекте); |
Лемма ((следствие из теоремы)): |
У ЛО не может быть больше СЗ, где |
Доказательство: |
(идет как упражнение) По теореме выше, набор собственных векторов - ЛНЗ набор. их не больше чем размерность пространства, а . |
Поиск СЗ и СВ
и
Если
тривиальное решениеЕсли
нетривиальное решение СВ- характеристический полином
- уравнение на СЗ, а - уравнение на СВ
Из уравнения на СЗ находим
- корни характеристического полинома, они же - характеристические числа.Затем подставляем каждую
в уравнение на СВ по очереди на находим СВ .Так найдутся все СВ.
Теорема: |
Пусть над С, тогда у есть хотя бы одно СЗ и один СВ. |
Доказательство: |
Основная теорема алгебры гласит, что у полинома комплексной переменной всегда есть корень. |