Алгоритм Балабана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Ошибка в ссылке)
м (rollbackEdits.php mass rollback)
 
(не показано 56 промежуточных версий 7 участников)
Строка 1: Строка 1:
'''Алгоритм Балабана''' {{---}} детерминированный алгоритм, позволяющий по множеству отрезков на плоскости получить множество точек, в которых эти отрезки пересекаются <br>
+
{{В разработке}}
 +
 
 +
'''Алгоритм Балабана''' {{---}} детерминированный алгоритм, позволяющий по множеству отрезков на плоскости получить множество точек, в которых эти отрезки пересекаются. <br>
  
 
==Введение==
 
==Введение==
  
Методы поиска пересечений отрезков разделяются на детерминированные и недетерминированные. Тривиальный детерминированный алгоритм имеет временную сложность <tex>O(n^2)</tex> и суть его заключается в проверке попарного пересечения отрезков. Сложнее, но эффективнее алгоритм Бентли-Отмена <ref>[http://neerc.ifmo.ru/wiki/index.php?title=Алгоритм_Бентли-Оттмана ''Алгоритм_Бентли-Оттмана'']</ref> с оценкой сложности <tex>O((n + k)\ log(n)+k)</tex>, в основе которого лежит метод заметающей прямой. Оптимальный детерминированный алгоритм был предложен Балабаном <ref>[http://www.cs.sfu.ca/~binay/813.2011/Balaban.pdf ''I.J. Balaban. An optimal algorithm for finding segments intersections. In Proceedings of the Eleventh Annual Symposium on Computational Geometry, ACM Press, New York, 1995. - pp. 211–219.'']</ref> с временной оценкой сложности <tex>O(n\ log(n) + k)</tex> и <tex>O(n)</tex> памяти.
+
Решение задачи по поиску множества пересечений отрезков является одной из главных задач вычислительной геометрии. Рассмотрим несколько самых распространенных алгоритмов:
 +
 
 +
# Тривиальный детерминированный алгоритм имеет временную сложность <tex>O(n^2)</tex>, и его суть заключается в проверке попарного пересечения отрезков.
 +
# Сложнее, но эффективнее алгоритм Бентли-Оттмана <ref>[http://neerc.ifmo.ru/wiki/index.php?title=Алгоритм_Бентли-Оттмана ''Алгоритм Бентли-Оттмана'']</ref> с оценкой сложности <tex>O((n + k) \log n +k)</tex>, в основе которого лежит метод заметающей прямой.
 +
# Алгоритм, предложенный Чазелле и Едельсбруннером <ref>[http://www.cs.princeton.edu/~chazelle/pubs/IntersectLineSegments.pdf ''An optimal algorithm for intersecting line segments in the plane'']</ref>, имеет лучшую оценку <tex>O(n \log n + k)</tex>, но в отличие от предыдущих методов требует квадратичной памяти.
 +
# Оптимальный детерминированный алгоритм был предложен Балабаном <ref>[http://www.cs.sfu.ca/~binay/813.2011/Balaban.pdf ''I.J. Balaban. An optimal algorithm for finding segments intersections. In Proceedings of the Eleventh Annual Symposium on Computational Geometry, ACM Press, New York, 1995. - pp. 211–219.'']</ref> с временной оценкой сложности <tex>O(n \log(n) + k)</tex> и <tex>O(n)</tex> памяти, где К - число пересекающихся отрезков.
 +
 
 +
При количестве отрезков от 2000, и большому количеству пересечений целесообразно использовать алгоритм Балабана. Однако в результате громоздкости и высокой сложности реализации алгоритма, в большинстве практических задач используется алгоритм заметающей прямой Бентли-Оттмана.
 +
 
 +
==Основные понятия==
 +
 
 +
Введем некоторые обозначения. Пусть <tex>Int(S)</tex> - множество всех точек пересечения отрезков из множества <tex>S</tex>, а <tex>K = |Int(S)|</tex> - количество таких пересечений ;<br>
 +
Через <tex>\langle a, b \rangle</tex> обозначим вертикальную полосу, которая ограничена прямыми <tex>x = a</tex> и <tex>x = b</tex>, а через <tex>s</tex> {{---}} отрезок с вершинами в точках с абсциссами <tex>l</tex> и <tex>r</tex>.<br>
 +
Рассмотрим взаимное расположение вертикальной полосы <tex>\langle a, b \rangle</tex> и отрезка <tex>s</tex>.
 +
 
 +
{{Определение
 +
|definition=
 +
Будем говорить, что отрезок <tex>s</tex>, с вершинами в точках с абсциссами <tex>l</tex> и <tex>r</tex> :
 +
{{---}} '''охватывает''' (''span'') полосу <tex>\langle a, b \rangle</tex>, если <tex>l \le a \le b \le r</tex>; <br>
 +
 
 +
{{---}} '''внутренний''' (''inner'') для полосы <tex>\langle a, b \rangle</tex>, если <tex>a < l < r < b</tex>; <br>
 +
 
 +
{{---}} '''пересекает''' (''cross'') полосу <tex>\langle a, b \rangle</tex> в других случаях.
 +
}}
 +
 
 +
{{Определение
 +
|definition=
 +
Два отрезка <tex>s_1</tex> и <tex>s_2</tex> называются ''пересекающимися внутри'' полосы <tex>\langle a, b \rangle</tex>, если их точка пересечения лежит в пределах этой полосы.<br>
 +
 
 +
Для двух множеств отрезков <tex>S</tex> и <tex>S'</tex> определим множество <tex>Int(S, S')</tex> как <tex>\{ {s, s'} | (s \in S, s' \in S') \& (s \ intersect \ s') \}</tex>.
 +
}}
 +
[[Файл:Balaban_pic_1.png|280px|thumb|right|<tex>D = ((s_1, s_2, s_3), \langle a, b \rangle)</tex>, <tex>Loc(D, s_4) = 0</tex>, <tex>Loc(D, s_5) = 2</tex> или <tex>3</tex>, <tex>Int(D, \{s_4,\ s_5\}) = \{\{s_3,\ s_5\}\}</tex>]]
 +
 
 +
Обозначения <tex>Int_{a, b}(S)</tex> и <tex>Int_{a, b}(S, S')</tex> будут использоваться для описания подмножеств <tex>Int(S)</tex> и <tex>Int(S, S')</tex>, состоящих из пересекающихся пар отрезков в пределах полосы <tex>\langle a, b \rangle</tex>.
 +
 
 +
Далее фигурные скобки <tex>\{\}</tex> используются для определения неупорядоченных множеств, а круглые скобки <tex>()</tex> используются для определения упорядоченных множеств.
 +
 
 +
{{Определение
 +
|neat=neat
 +
|definition=
 +
Введем отношение порядка на множестве отрезков <tex>s_1 <_a s_2</tex> если оба отрезка пересекают вертикальную линию<br> <tex>x = a</tex> и точка пересечения этой прямой с отрезком <tex>s_1</tex> лежит ниже точки пересечения с <tex>s_2</tex>.
 +
}}
 +
 
 +
{{Определение
 +
|neat=neat
 +
|definition=
 +
''Лестница'' <tex>D</tex> — это пара <tex>(Q, \langle a, b \rangle)</tex>, в которой отрезки из множества <tex>Q</tex> удовлетворяют следующим условиям :
 +
{{---}} любой отрезок из <tex>Q</tex> охватывает полосу <tex>\langle a, b \rangle</tex>; <br>
 +
{{---}} нет пересечений отрезков внутри лестницы; <br>
 +
{{---}} <tex>Q</tex> упорядочена по отношению <tex><_a</tex>.
 +
 
 +
Часть отрезков лестницы внутри полосы будем называть '''ступеньками'''.
 +
}}
 +
 
 +
{{Определение
 +
|definition=
 +
Будем называть лестницу <tex>D</tex> '''полной''' относительно множества отрезков <tex>S</tex>, если каждый отрезок из <tex>S</tex> либо не охватывает полосу <tex>\langle a, b \rangle</tex>, либо пересекает хотя бы одну из ступенек из множества <tex>D</tex>.
 +
}}
 +
 
 +
{{Лемма
 +
|id=lemma1
 +
|statement=
 +
Пусть лестница <tex>D</tex> полна относительно множества отрезков <tex>S</tex>, где <tex>S</tex> состоит из отрезков, пересекающих полосу <tex>\langle a, b \rangle</tex>, тогда <tex>|S| \le Ends_{a, b}(S) + |Int(D, S)|</tex>,<br>
 +
где <tex>Ends_{a, b}(S)</tex> это число вершин отрезков из <tex>S</tex>, находящихся в пределах полосы <tex>\langle a, b \rangle</tex>.
 +
}}
 +
 
 +
{{Определение
 +
|definition=
 +
Если точка <tex>p</tex> отрезка <tex>s</tex> лежит между ступеньками <tex>i</tex> и <tex>i + 1</tex>, тогда число <tex>i</tex> называется ''местоположением'' <tex>s</tex> на лестнице <tex>D</tex> и обозначается как <tex>Loc(D, s)</tex>
 +
}}
 +
 
 +
{{Утверждение
 +
|statement=
 +
Имея лестницу <tex>D = (Q, \langle a, b \rangle)</tex> и множество отрезков <tex>S</tex>, множество <tex>Int(D, S)</tex> можно найти за время <tex>O(|S| log|Q| + |Int(D, S)|)</tex>. <br>
 +
Однако, если <tex>S’</tex> упорядочено отношением <tex><_x</tex>, где <tex>x \in [a, b]</tex>, тогда можно найти <tex>Int(D, S)</tex> за время <tex>O(|S| + |Q| + |Int(D, S)|)</tex>.
 +
}}
  
 
==Алгоритм==
 
==Алгоритм==
 +
 +
Введем несколько дополнительных функций, чтобы упростить основной алгоритм:
 +
 +
===Split===
 +
 +
Функция <tex>Split</tex> разделяет входное множество отрезков <tex>L</tex>, охватывающих некоторую полосу <tex>\langle a, b \rangle</tex>, на подмножества <tex>Q</tex> и <tex>L'</tex> так, что лестница <tex>(Q, \langle a, b \rangle)</tex> полна относительно множества отрезков <tex>L'</tex>.
 +
 +
Пусть <tex>L = (s_1 ,..., s_k)</tex>, где <tex>s_i <_a s_{i+1}</tex>
 +
<tex>Split_{a, b}(L, Q, L')</tex>
 +
<tex>\{</tex>
 +
    <tex>L' \leftarrow \varnothing; Q \leftarrow \varnothing</tex>
 +
    '''for''' <tex>j = 1,...,k</tex> '''do'''
 +
        '''if''' отрезок <tex>S_j</tex> не пересекает
 +
        последний отрезок из <tex>Q</tex> внутри полосы <tex>\langle a, b \rangle</tex>
 +
        и при этом охватывает её '''then'''
 +
            добавить <tex>s_j</tex> в конец <tex>Q;</tex>
 +
        '''else'''
 +
            добавить <tex>s_j</tex> в конец <tex>L';</tex>
 +
<tex>\}</tex>
 +
 +
Эта функция работает за <tex>O(|L|)</tex> времени.
 +
 +
===Search In Strip===
 +
 +
Зная <tex>L</tex> мы можем найти <tex>Int_{a, b}(L)</tex> и <tex>R</tex> используя следующую рекурсивную функцию:
 +
 +
<tex>SearchInStrip_{a, b}(L, R)</tex>
 +
<tex>\{</tex>
 +
    <tex>Split(L, Q, L');</tex>
 +
    '''if''' <tex>L' = \varnothing</tex> '''then'''
 +
        <tex>R \leftarrow Q;</tex>
 +
        '''return'''<tex>;</tex>
 +
    Найдем <tex>Int_{a, b}(Q, L');</tex>
 +
    <tex>SearchInStrip_{a, b} (L', R');</tex>
 +
    <tex>R \leftarrow Merge_b(Q, R’);</tex>
 +
<tex>\}</tex>
 +
 +
Здесь, <tex>Merge_x(S_1, S_2)</tex> это функция объединения множеств <tex>S_1</tex> и <tex>S_2</tex>, упорядоченных по отношению <tex><_x</tex>. Время выполнения <tex>SearchInStrip</tex> эквивалентно сумме времён каждого её запуска. Очевидно, что время работы <tex>i</tex>-той функции, будет равно <tex>O(|L_i| + |Int_{a, b}(Q_i, {L_i}')|)</tex>, где <tex>L_i, Q_i, {L_i}'</tex> это соответствующие наборы <tex>(L_0 = L, L_{i+1} = {L_i}')</tex>.
 +
 +
Учитывая [[#lemma1|лемму]], заключаем, что функция <tex>SearchInStrip_{a, b}(L, R)</tex> работает за <tex>O(|L| + |Int_{a, b}(L)|)</tex>.
 +
 +
Предположим, что все отрезки лежат в полосе <tex>\langle a, b\rangle</tex>. Таким образом в самом начале у нас есть пара <tex>(S, \langle a, b\rangle)</tex>.
 +
Что же дальше происходит: множество <tex>S</tex> ''распадается'' в подмножества <tex>Q</tex> и <tex>S'</tex>, после чего лестница <tex>D = (Q, \langle a, b \rangle)</tex> становится полной относительно множества <tex>S'</tex>. Необходимо найти пересечения отрезков из <tex>D</tex> и <tex>S'</tex>, затем, все пересечения в <tex>S'</tex>. Чтобы найти пересечения отрезков в <tex>S'</tex>, мы ''режем'' полосу <tex>\langle a, b \rangle</tex> и множество <tex>S'</tex> по вертикале <tex>x = c</tex> на полосы <tex>\langle a, c \rangle</tex>, <tex>\langle c, b \rangle</tex> и множества <tex>S'_{ls}</tex>, <tex>S'_{rs}</tex> соответственно, где <tex>c</tex> является медианой вершин отрезков между <tex>a</tex> и <tex>b</tex>. Затем мы рекурсивно вызываем функцию к парам <tex>(S'_{ls}, \langle a, c \rangle)</tex> и <tex>(S'_{rs}, \langle c, b \rangle)</tex>. Ключевым является тот факт, что согласно [[#lemma1|лемме]] <tex>|S'| \le Ends_{a, b}(S') + |Int(D, S')|</tex>, таким образом, число дополнительных отрезков, появляющихся после ''разрезаний'' пропорционально числу найденных пересечений.
 +
 +
===Ключевые моменты===
 +
 +
Давайте разберемся с алгоритмом более подробно:
 +
 +
Не умаляя общности, предположим, что все пересечения и вершины отрезков имеют разные абсциссы (в конечном счете, их можно будет отсортировать введением дополнительных свойств). Будем рассматривать целые координаты на промежутке <tex>[1, 2N]</tex>. Обозначим через <tex>p_i</tex> слева направо конец отрезка множества <tex>S_0</tex>, а через <tex>s(i)</tex> отрезок, которому он принадлежит соответственно.
 +
 +
Основная задача нашего алгоритма, это рекурсивная функция <tex>TreeSearch</tex>. Соединим каждый вызов функции с узлом некоего двоичного дерева (далее ''рекурсивное дерево''). Соответствующим узлом отметим все значения, множества и параметры вызова. Обозначим множество внутренних вершин за <tex>V</tex>.
 +
 +
<tex>IntersectingPairs(S_0):</tex>
 +
    Отсортируем <tex>2 \cdot N</tex> вершин по координатам и
 +
        найдем <tex>p_i, s(i), i = 1,...,2 \cdot N;\ S_r \leftarrow S_0</tex>
 +
    <tex>TreeSearch(S_r, 1, 2 \cdot N)</tex>;
 +
 +
<tex>TreeSearch(S_v, a, b):</tex>
 +
<tex>\{</tex>
 +
    '''if''' <tex>b - a = 1</tex> '''then'''
 +
    <tex>\{</tex>
 +
        <tex>L \leftarrow</tex> отсортируем <tex>S_v</tex> по отношению <tex><_a</tex>;
 +
        <tex>SearchInStrip_{a, b}(L_v, R_v)</tex>;
 +
        '''return''';
 +
    <tex>\}</tex>
 +
    Разделим <tex>S_v</tex> на <tex>Q_v</tex> и <tex>S_v'</tex> так, что лестница
 +
        <tex>D_v \leftarrow (Q_v, \langle a, b \rangle)</tex> будет полной, относительно множества <tex>S_v'</tex>;
 +
    Найдем <tex>Int(D_v, S_v')</tex>;
 +
    <tex>c \leftarrow \lfloor (a + b)/2 \rfloor</tex>;
 +
    Разделим отрезки из <tex>S_v'</tex> на пересекающих
 +
        полосу <tex>\langle a, c \rangle</tex> <tex>S_{ls}(v)</tex> и
 +
        полосу <tex>\langle c, b \rangle</tex> <tex>S_{rs}(v)</tex>;
 +
    <tex>TreeSearch(S_{ls}(v), a, c)</tex>;
 +
    <tex>TreeSearch(S_{rs}(v), c, b)</tex>;
 +
<tex>\}</tex>
 +
 +
Отсюда и дальше <tex>ls(v)</tex>, <tex>rs(v)</tex> и <tex>ft(v)</tex> означают, соответственно, левого сына, правого сына, и отцовскую вершину узла <tex>v</tex>.
 +
Наша задача показать, что все операции с узлом <tex>v</tex> происходят за <tex>O(|S_v| + |Int(D_v, S_v')| + (a_v - b_v)logN)</tex>, для этого возьмем во внимание, что <tex>\sum_v |S_v| = O(N \cdot logN + K)</tex> (очевидно, что <tex>\sum_v |Int(D_v, S_v')| \le K</tex>).
 +
 +
[[Файл:Balaban_pic_2.png|280px|thumb|right|<tex>S_v = \{s_1, s_2, s_3, s_4, s_5\}</tex>, <tex>L_v = (s_1, s_3)</tex>, <tex>R_v = (s_4, s_3)</tex>, <tex>I_v = \{s_2, s_5\}</tex>]]
 +
 +
Функция <tex>TreeSearch</tex> похожа на функцию <tex>SearchInStrip</tex>. Основная разница заключается в том, что <tex>SearchInStrip</tex> вызывает себя без изменения полосы, когда <tex>TreeSearch</tex> делит полосу на две части, после чего рекурсивно вызывает себя для них. Другое отличие заключается в том, что множество <tex>S_v</tex> не упорядочено так же, как <tex>L</tex>. В результате мы не можем напрямую использовать функцию <tex>Split</tex> для эффективного деления <tex>S_v</tex>.
 +
 +
Чтобы решить эту проблему, представим <tex>S_v</tex> как объединение трех множеств:
 +
множества <tex>L_v</tex> упорядоченного по отношению <tex><_a</tex>, неупорядоченного множества <tex>I_v</tex>, и множества <tex>R_v</tex> упорядоченного по отношению <tex><_b</tex>. Расположим отрезки из <tex>S_v</tex>, пересекающие границу <tex>x = a</tex> во множество <tex>L_v</tex>, отрезки пересекающие <tex>x = b</tex> во множество <tex>R_v</tex>, и внутренние отрезки во множество <tex>I_v</tex> (пример на ''рисунке справа'').
 +
 +
Теперь мы можем вызвать функцию <tex>Split</tex> для множества <tex>L_v</tex> и построить <tex>Q_v</tex> за <tex>O(|L_v|) = O(|S_v|)</tex> времени. Но мы натыкаемся на новую проблему: передавая множества <tex>L_v</tex>, <tex>I_v</tex> и <tex>R_v</tex>, необходимо найти соответствующие множества сыновей узла <tex>v</tex>.
 +
 +
Неупорядоченные множества <tex>I_{ls(v)}</tex> и <tex>I_{rs(v)}</tex> строятся легко. Множество <tex>L_{ls(v)}</tex> будет найдено вызовом функции <tex>Split_{a, b}(L_v, Q_v, L_{ls(v)})</tex> для нахождения <tex>Int(D_v, S_v')</tex> в функции <tex>TreeSearch</tex>. Множество <tex>L_{rs(v)}</tex> получается из <tex>R_{ls(v)}</tex> за линейное время вставкой (если <tex>p_c</tex> левая вершина отрезка) или удалением (если <tex>p_c</tex> правая вершина отрезка) отрезка <tex>s(c)</tex>. Но как получить <tex>R_{ls(v)}</tex> из <tex>L_v</tex>, <tex>R_v</tex> и <tex>I_v</tex> без сортировки?
 +
 +
Для листьев мы сделаем проверку вначале, и получим <tex>R_v</tex> из <tex>L_v</tex>. Пусть <tex>L_v</tex> и <tex>I_v</tex> известны, и все сыновья узла <tex>v</tex> - листья. Для начала запустим функцию <tex>Split(L_v, Q_v, L_{ls(v)})</tex> и найдем <tex>Q_v</tex> и <tex>L_{ls(v)}</tex>. Теперь мы должны найти <tex>Int(D_s, S_v') = Int(D_v, L_{ls(v)}) \cup Int(D_v, I_v) \cup Int(D_v, R_{rs(v)})</tex>, но мы не знаем <tex>R_{rs(v)}</tex> и, соответственно, можем найти только <tex>Int(D_v, L_{ls(v)}) \cup Int(D_v, I_v)</tex>. Применим <tex>SearchInStrip</tex> к множеству <tex>L_{ls(v)}</tex> и получим <tex>R_{ls(v)}</tex>. Множество <tex>L_{rs(v)}</tex> получается из <tex>R_{ls(v)}</tex> вставкой или удалением отрезка <tex>s(c)</tex>. Применим <tex>SearchInStrip</tex> к <tex>L_{rs(v)}</tex> и найдем <tex>R_{rs(v)}</tex>. Теперь можем продолжить вычисление <tex>Int(D_v, R_{rs(v)})</tex> и получим <tex>R_v</tex> слиянием <tex>Q_v</tex> и <tex>R_{rs(v)}</tex>.
 +
 +
Конечная функция будет выглядеть так:
 +
<tex>IntersectingPairs(S_0)</tex>
 +
<tex>\{</tex>
 +
    Отсортируем <tex>2N</tex> концов отрезков по абсциссе
 +
        и найдем <tex>p_i</tex>, <tex>s(i)</tex> где <tex>i = 1, ..., 2N</tex>;
 +
    <tex>L_r \leftarrow (s(1))</tex>; <tex>I_r \leftarrow S_0 \setminus (\{s(1)\} \cup \{s(2N)\})</tex>;
 +
    <tex>TreeSearch(L_r, I_r, 1, 2N, R_r)</tex>;
 +
<tex>\}</tex>
 +
 +
<tex>TreeSearch(L_v, I_v, a, b, R_v)</tex>
 +
<tex>\{</tex>
 +
    '''if''' <tex>b - a = 1</tex> '''then'''
 +
    <tex>\{</tex>
 +
        <tex>SearchInStrip_{a, b}(L_v, R_v)</tex>;
 +
        '''return''';
 +
    <tex>\}</tex>
 +
    <tex>Split_{a, b}(L_v, Q_v, L_{ls(v)})</tex>;
 +
    <tex>D_v \leftarrow (Q_v, \langle a, b \rangle)</tex>;
 +
    Найдем <tex>Int(D_v, L_{ls(v)})</tex>;
 +
    <tex>c \leftarrow \lfloor (a + b) / 2 \rfloor</tex>;
 +
    Разделяем отрезки из <tex>I_v</tex>
 +
        внутренние для полосы <tex>\langle a, c \rangle</tex> во множество <tex>I_{ls(v)}</tex>
 +
        внутренние для полосы <tex>\langle c, b \rangle</tex> во множество <tex>I_{rs(v)}</tex>
 +
    <tex>TreeSearch(L_{ls(v)}, I_{ls(v)}, a, c, R_{ls(v)})</tex>;
 +
    '''if''' <tex>p_c</tex> левый конец отрезка <tex>s(c)</tex> '''then'''
 +
        <tex>L_{rs(v)} \leftarrow</tex> вставить <tex>s(c)</tex> в <tex>R_{ls(v)}</tex>
 +
    '''else'''
 +
        <tex>L_{rs(v)} \leftarrow</tex> удалить <tex>s(c)</tex> из <tex>R_{ls(v)}</tex>
 +
    <tex>TreeSearch(L_{rs(v)}, I_{rs(v)}, c, b, R_{rs(v)})</tex>;
 +
    Найдем <tex>Int(D_v, R_{rs(v)})</tex>;
 +
    '''for''' <tex>s \in I_v</tex> '''do'''
 +
        Найдем <tex>Loc(D_v, s)</tex> используя двоичный поиск;
 +
    Найдем <tex>Int(D_v, I_v)</tex> используя значения, полученные шагом выше;
 +
    <tex>R_v \leftarrow Merge_b(Q_v, R_{rs(v)})</tex>;
 +
<tex>\}</tex>
 +
 +
Заметим, что нахождение <tex>Int(D_v, R_{rs(v)})</tex> надо делать аккуратно, так как множества <tex>R_{rs(v)}</tex> и <tex>L_{ls(v)}</tex> могут иметь одни и те же отрезки (которые '''пересекают''' <tex>\langle a, b \rangle</tex>). Мы нашли их пересечения с <tex>D_v</tex> при поиске <tex>Int(D_v, L_{ls(v)})</tex>, и не должны вывести эти пересечения снова.
 +
 +
==Время работы==
 +
 +
Для начала рассчитаем место, необходимое для выполнения алгоритма. Алгоритм использует рекурсивную функцию <tex>TreeSearch</tex>. Последовательность вызовов функции может занять память. Эта последовательность может быть представлена как путь корня рекурсивного дерева, до узла. Соответствующий вызов этого узла занимает <tex>O(N)</tex> памяти, каждый его "предок" занимает <tex>O(|I_v| + |Q_v|)</tex> памяти, а остальные структуры используют <tex>O(N)</tex>. Очевидно, что любой путь <tex>pt</tex> от корня рекурсивного дерева до какого-то узла <tex>\sum_{v \in pt}(|I_v + |Q_v|) = O(N)(|I_v| \le b_v - a_v \le \lceil (b_{ft(v)} - a_{ft(v)})/2 \rceil)</tex>.
 +
 +
В итоге для работы алгоритма требуется <tex>O(N)</tex> памяти.
 +
 +
{{Лемма
 +
|id=lemma2
 +
|about=
 +
#2
 +
|statement=
 +
<tex>\forall v \in V \  |S_v'| \le a_v - b_v + |Int(D_v, S_v')|</tex>.
 +
|proof=
 +
Утверждение напрямую вытекает из [[#lemma1|первой леммы]] и очевидного факта, что для любого множества <tex>S \subset S_0</tex>, количество концов отрезков, лежащих в полосе <tex>\langle a_v, b_v \rangle</tex>, меньше чем  <tex>b_v - a_v</tex>.
 +
}}
 +
 +
{{Теорема
 +
|about=
 +
#1
 +
|statement=
 +
<tex>\sum_{v \in V} |S_v'| \le 2N \lceil logN + 1 \rceil + K</tex>
 +
|proof=
 +
Утверждение напрямую вытекает из [[#lemma2|леммы №2]] и следующего отношения <tex>\sum_v (b_v - a_v) \le 2N \lceil logN + 1 \rceil</tex>.
 +
}}
 +
 +
Обозначим множество всех вершин рекурсивного дерева за <tex>RT</tex>.
 +
 +
{{Теорема
 +
|about=
 +
#2
 +
|statement=
 +
<tex>\sum_{v \in RT} |S_v| \le N \lceil 4logN + 5 \rceil + 2K</tex>
 +
|proof=
 +
Для всех узлов, кроме корня <tex>r</tex> имеет место выражение <tex>|S_v| \le |S_{ft(v)}'|</tex>, следовательно <tex>\sum_{v \in RT} |S_v| \le |S_r| + \sum_{v \in RT \setminus r} |S_{ft(v)}| \le N + 2 \sum_{v \in V} |S_v'| \le N \lceil 4 logN + 5 \rceil + 2K</tex>.
 +
}}
 +
 +
Начальная сортировка и инициализация множеств <tex>L_r</tex> и <tex>I_r</tex> может быть произведена за <tex>O(N logN)</tex> времени. Время работы функции <tex>TreeSearch</tex> является суммой длительностей всех его вызовов. Каждый вызов от внешних узлов добавляет к этой сумме <tex>O(|L_v| + |Int_{a, b}(L_v)|)</tex>. Для внутренних же узлов, время требуемое для поиска <tex>Loc(D_v, s)</tex> равно <tex>O(|I_v| log N)</tex>, а для остальных <tex>O(|S_v| + |Int(D_v, S_v')|)</tex>. Если мы все это сложим, то придем к выводу, что наш алгоритм работает за <tex>O(N log^2 N + K)</tex>. Заметим, что его скорость можно увеличить до <tex>O(N logN + K)</tex>, если не будем учитывать время нахождения <tex>Loc(D_v, s)</tex>.
 +
 +
Соответственно в оптимальном алгоритме Балабана <tex>Loc(D_v, s)</tex> находится за <tex>O(1)</tex>.
  
 
==Примечания==
 
==Примечания==
Строка 13: Строка 259:
 
==Литература==
 
==Литература==
  
[http://www.graphicon.ru/proceedings/2010/conference/RU/Se4/021.pdf ''К построению эффективного решения задачи пересечения отрезков'']<br>
+
[http://www.graphicon.ru/proceedings/2010/conference/RU/Se4/021.pdf ''Т.Вознюк, В.Терещенко {{---}} К построению эффективного решения задачи пересечения отрезков'']<br>
 +
[http://booksshare.net/books/math/preparata-f/1989/files/vichgeometr.pdf ''Ф.Препарата, М.Шеймос {{---}} Вычислительная геометрия'']<br>
 +
 
  
 
[[Категория: Вычислительная геометрия]]
 
[[Категория: Вычислительная геометрия]]

Текущая версия на 19:05, 4 сентября 2022

Эта статья находится в разработке!

Алгоритм Балабана — детерминированный алгоритм, позволяющий по множеству отрезков на плоскости получить множество точек, в которых эти отрезки пересекаются.

Введение

Решение задачи по поиску множества пересечений отрезков является одной из главных задач вычислительной геометрии. Рассмотрим несколько самых распространенных алгоритмов:

  1. Тривиальный детерминированный алгоритм имеет временную сложность [math]O(n^2)[/math], и его суть заключается в проверке попарного пересечения отрезков.
  2. Сложнее, но эффективнее алгоритм Бентли-Оттмана [1] с оценкой сложности [math]O((n + k) \log n +k)[/math], в основе которого лежит метод заметающей прямой.
  3. Алгоритм, предложенный Чазелле и Едельсбруннером [2], имеет лучшую оценку [math]O(n \log n + k)[/math], но в отличие от предыдущих методов требует квадратичной памяти.
  4. Оптимальный детерминированный алгоритм был предложен Балабаном [3] с временной оценкой сложности [math]O(n \log(n) + k)[/math] и [math]O(n)[/math] памяти, где К - число пересекающихся отрезков.

При количестве отрезков от 2000, и большому количеству пересечений целесообразно использовать алгоритм Балабана. Однако в результате громоздкости и высокой сложности реализации алгоритма, в большинстве практических задач используется алгоритм заметающей прямой Бентли-Оттмана.

Основные понятия

Введем некоторые обозначения. Пусть [math]Int(S)[/math] - множество всех точек пересечения отрезков из множества [math]S[/math], а [math]K = |Int(S)|[/math] - количество таких пересечений ;
Через [math]\langle a, b \rangle[/math] обозначим вертикальную полосу, которая ограничена прямыми [math]x = a[/math] и [math]x = b[/math], а через [math]s[/math] — отрезок с вершинами в точках с абсциссами [math]l[/math] и [math]r[/math].
Рассмотрим взаимное расположение вертикальной полосы [math]\langle a, b \rangle[/math] и отрезка [math]s[/math].


Определение:
Будем говорить, что отрезок [math]s[/math], с вершинами в точках с абсциссами [math]l[/math] и [math]r[/math] :

охватывает (span) полосу [math]\langle a, b \rangle[/math], если [math]l \le a \le b \le r[/math];

внутренний (inner) для полосы [math]\langle a, b \rangle[/math], если [math]a \lt l \lt r \lt b[/math];

пересекает (cross) полосу [math]\langle a, b \rangle[/math] в других случаях.


Определение:
Два отрезка [math]s_1[/math] и [math]s_2[/math] называются пересекающимися внутри полосы [math]\langle a, b \rangle[/math], если их точка пересечения лежит в пределах этой полосы.
Для двух множеств отрезков [math]S[/math] и [math]S'[/math] определим множество [math]Int(S, S')[/math] как [math]\{ {s, s'} | (s \in S, s' \in S') \& (s \ intersect \ s') \}[/math].
[math]D = ((s_1, s_2, s_3), \langle a, b \rangle)[/math], [math]Loc(D, s_4) = 0[/math], [math]Loc(D, s_5) = 2[/math] или [math]3[/math], [math]Int(D, \{s_4,\ s_5\}) = \{\{s_3,\ s_5\}\}[/math]

Обозначения [math]Int_{a, b}(S)[/math] и [math]Int_{a, b}(S, S')[/math] будут использоваться для описания подмножеств [math]Int(S)[/math] и [math]Int(S, S')[/math], состоящих из пересекающихся пар отрезков в пределах полосы [math]\langle a, b \rangle[/math].

Далее фигурные скобки [math]\{\}[/math] используются для определения неупорядоченных множеств, а круглые скобки [math]()[/math] используются для определения упорядоченных множеств.


Определение:
Введем отношение порядка на множестве отрезков [math]s_1 \lt _a s_2[/math] если оба отрезка пересекают вертикальную линию
[math]x = a[/math] и точка пересечения этой прямой с отрезком [math]s_1[/math] лежит ниже точки пересечения с [math]s_2[/math].


Определение:
Лестница [math]D[/math] — это пара [math](Q, \langle a, b \rangle)[/math], в которой отрезки из множества [math]Q[/math] удовлетворяют следующим условиям :

— любой отрезок из [math]Q[/math] охватывает полосу [math]\langle a, b \rangle[/math];
— нет пересечений отрезков внутри лестницы;
[math]Q[/math] упорядочена по отношению [math]\lt _a[/math].

Часть отрезков лестницы внутри полосы будем называть ступеньками.


Определение:
Будем называть лестницу [math]D[/math] полной относительно множества отрезков [math]S[/math], если каждый отрезок из [math]S[/math] либо не охватывает полосу [math]\langle a, b \rangle[/math], либо пересекает хотя бы одну из ступенек из множества [math]D[/math].


Лемма:
Пусть лестница [math]D[/math] полна относительно множества отрезков [math]S[/math], где [math]S[/math] состоит из отрезков, пересекающих полосу [math]\langle a, b \rangle[/math], тогда [math]|S| \le Ends_{a, b}(S) + |Int(D, S)|[/math],
где [math]Ends_{a, b}(S)[/math] это число вершин отрезков из [math]S[/math], находящихся в пределах полосы [math]\langle a, b \rangle[/math].


Определение:
Если точка [math]p[/math] отрезка [math]s[/math] лежит между ступеньками [math]i[/math] и [math]i + 1[/math], тогда число [math]i[/math] называется местоположением [math]s[/math] на лестнице [math]D[/math] и обозначается как [math]Loc(D, s)[/math]


Утверждение:
Имея лестницу [math]D = (Q, \langle a, b \rangle)[/math] и множество отрезков [math]S[/math], множество [math]Int(D, S)[/math] можно найти за время [math]O(|S| log|Q| + |Int(D, S)|)[/math].
Однако, если [math]S’[/math] упорядочено отношением [math]\lt _x[/math], где [math]x \in [a, b][/math], тогда можно найти [math]Int(D, S)[/math] за время [math]O(|S| + |Q| + |Int(D, S)|)[/math].

Алгоритм

Введем несколько дополнительных функций, чтобы упростить основной алгоритм:

Split

Функция [math]Split[/math] разделяет входное множество отрезков [math]L[/math], охватывающих некоторую полосу [math]\langle a, b \rangle[/math], на подмножества [math]Q[/math] и [math]L'[/math] так, что лестница [math](Q, \langle a, b \rangle)[/math] полна относительно множества отрезков [math]L'[/math].

Пусть [math]L = (s_1 ,..., s_k)[/math], где [math]s_i \lt _a s_{i+1}[/math]
[math]Split_{a, b}(L, Q, L')[/math]
[math]\{[/math]
    [math]L' \leftarrow \varnothing; Q \leftarrow \varnothing[/math]
    for [math]j = 1,...,k[/math] do
        if отрезок [math]S_j[/math] не пересекает
        последний отрезок из [math]Q[/math] внутри полосы [math]\langle a, b \rangle[/math]
        и при этом охватывает её then
            добавить [math]s_j[/math] в конец [math]Q;[/math]
        else
            добавить [math]s_j[/math] в конец [math]L';[/math]
[math]\}[/math]

Эта функция работает за [math]O(|L|)[/math] времени.

Search In Strip

Зная [math]L[/math] мы можем найти [math]Int_{a, b}(L)[/math] и [math]R[/math] используя следующую рекурсивную функцию:

[math]SearchInStrip_{a, b}(L, R)[/math]
[math]\{[/math]
    [math]Split(L, Q, L');[/math] 
    if [math]L' = \varnothing[/math] then
        [math]R \leftarrow Q;[/math] 
        return[math];[/math]
    Найдем [math]Int_{a, b}(Q, L');[/math]
    [math]SearchInStrip_{a, b} (L', R');[/math]
    [math]R \leftarrow Merge_b(Q, R’);[/math]
[math]\}[/math]

Здесь, [math]Merge_x(S_1, S_2)[/math] это функция объединения множеств [math]S_1[/math] и [math]S_2[/math], упорядоченных по отношению [math]\lt _x[/math]. Время выполнения [math]SearchInStrip[/math] эквивалентно сумме времён каждого её запуска. Очевидно, что время работы [math]i[/math]-той функции, будет равно [math]O(|L_i| + |Int_{a, b}(Q_i, {L_i}')|)[/math], где [math]L_i, Q_i, {L_i}'[/math] это соответствующие наборы [math](L_0 = L, L_{i+1} = {L_i}')[/math].

Учитывая лемму, заключаем, что функция [math]SearchInStrip_{a, b}(L, R)[/math] работает за [math]O(|L| + |Int_{a, b}(L)|)[/math].

Предположим, что все отрезки лежат в полосе [math]\langle a, b\rangle[/math]. Таким образом в самом начале у нас есть пара [math](S, \langle a, b\rangle)[/math]. Что же дальше происходит: множество [math]S[/math] распадается в подмножества [math]Q[/math] и [math]S'[/math], после чего лестница [math]D = (Q, \langle a, b \rangle)[/math] становится полной относительно множества [math]S'[/math]. Необходимо найти пересечения отрезков из [math]D[/math] и [math]S'[/math], затем, все пересечения в [math]S'[/math]. Чтобы найти пересечения отрезков в [math]S'[/math], мы режем полосу [math]\langle a, b \rangle[/math] и множество [math]S'[/math] по вертикале [math]x = c[/math] на полосы [math]\langle a, c \rangle[/math], [math]\langle c, b \rangle[/math] и множества [math]S'_{ls}[/math], [math]S'_{rs}[/math] соответственно, где [math]c[/math] является медианой вершин отрезков между [math]a[/math] и [math]b[/math]. Затем мы рекурсивно вызываем функцию к парам [math](S'_{ls}, \langle a, c \rangle)[/math] и [math](S'_{rs}, \langle c, b \rangle)[/math]. Ключевым является тот факт, что согласно лемме [math]|S'| \le Ends_{a, b}(S') + |Int(D, S')|[/math], таким образом, число дополнительных отрезков, появляющихся после разрезаний пропорционально числу найденных пересечений.

Ключевые моменты

Давайте разберемся с алгоритмом более подробно:

Не умаляя общности, предположим, что все пересечения и вершины отрезков имеют разные абсциссы (в конечном счете, их можно будет отсортировать введением дополнительных свойств). Будем рассматривать целые координаты на промежутке [math][1, 2N][/math]. Обозначим через [math]p_i[/math] слева направо конец отрезка множества [math]S_0[/math], а через [math]s(i)[/math] отрезок, которому он принадлежит соответственно.

Основная задача нашего алгоритма, это рекурсивная функция [math]TreeSearch[/math]. Соединим каждый вызов функции с узлом некоего двоичного дерева (далее рекурсивное дерево). Соответствующим узлом отметим все значения, множества и параметры вызова. Обозначим множество внутренних вершин за [math]V[/math].

[math]IntersectingPairs(S_0):[/math]
    Отсортируем [math]2 \cdot N[/math] вершин по координатам и
        найдем [math]p_i, s(i), i = 1,...,2 \cdot N;\ S_r \leftarrow S_0[/math]
    [math]TreeSearch(S_r, 1, 2 \cdot N)[/math];
[math]TreeSearch(S_v, a, b):[/math]
[math]\{[/math]
    if [math]b - a = 1[/math] then
    [math]\{[/math]
        [math]L \leftarrow[/math] отсортируем [math]S_v[/math] по отношению [math]\lt _a[/math];
        [math]SearchInStrip_{a, b}(L_v, R_v)[/math]; 
        return;
    [math]\}[/math]
    Разделим [math]S_v[/math] на [math]Q_v[/math] и [math]S_v'[/math] так, что лестница
        [math]D_v \leftarrow (Q_v, \langle a, b \rangle)[/math] будет полной, относительно множества [math]S_v'[/math];
    Найдем [math]Int(D_v, S_v')[/math];
    [math]c \leftarrow \lfloor (a + b)/2 \rfloor[/math];
    Разделим отрезки из [math]S_v'[/math] на пересекающих
        полосу [math]\langle a, c \rangle[/math] [math]S_{ls}(v)[/math] и
        полосу [math]\langle c, b \rangle[/math] [math]S_{rs}(v)[/math];
    [math]TreeSearch(S_{ls}(v), a, c)[/math];
    [math]TreeSearch(S_{rs}(v), c, b)[/math];
[math]\}[/math]

Отсюда и дальше [math]ls(v)[/math], [math]rs(v)[/math] и [math]ft(v)[/math] означают, соответственно, левого сына, правого сына, и отцовскую вершину узла [math]v[/math]. Наша задача показать, что все операции с узлом [math]v[/math] происходят за [math]O(|S_v| + |Int(D_v, S_v')| + (a_v - b_v)logN)[/math], для этого возьмем во внимание, что [math]\sum_v |S_v| = O(N \cdot logN + K)[/math] (очевидно, что [math]\sum_v |Int(D_v, S_v')| \le K[/math]).

[math]S_v = \{s_1, s_2, s_3, s_4, s_5\}[/math], [math]L_v = (s_1, s_3)[/math], [math]R_v = (s_4, s_3)[/math], [math]I_v = \{s_2, s_5\}[/math]

Функция [math]TreeSearch[/math] похожа на функцию [math]SearchInStrip[/math]. Основная разница заключается в том, что [math]SearchInStrip[/math] вызывает себя без изменения полосы, когда [math]TreeSearch[/math] делит полосу на две части, после чего рекурсивно вызывает себя для них. Другое отличие заключается в том, что множество [math]S_v[/math] не упорядочено так же, как [math]L[/math]. В результате мы не можем напрямую использовать функцию [math]Split[/math] для эффективного деления [math]S_v[/math].

Чтобы решить эту проблему, представим [math]S_v[/math] как объединение трех множеств: множества [math]L_v[/math] упорядоченного по отношению [math]\lt _a[/math], неупорядоченного множества [math]I_v[/math], и множества [math]R_v[/math] упорядоченного по отношению [math]\lt _b[/math]. Расположим отрезки из [math]S_v[/math], пересекающие границу [math]x = a[/math] во множество [math]L_v[/math], отрезки пересекающие [math]x = b[/math] во множество [math]R_v[/math], и внутренние отрезки во множество [math]I_v[/math] (пример на рисунке справа).

Теперь мы можем вызвать функцию [math]Split[/math] для множества [math]L_v[/math] и построить [math]Q_v[/math] за [math]O(|L_v|) = O(|S_v|)[/math] времени. Но мы натыкаемся на новую проблему: передавая множества [math]L_v[/math], [math]I_v[/math] и [math]R_v[/math], необходимо найти соответствующие множества сыновей узла [math]v[/math].

Неупорядоченные множества [math]I_{ls(v)}[/math] и [math]I_{rs(v)}[/math] строятся легко. Множество [math]L_{ls(v)}[/math] будет найдено вызовом функции [math]Split_{a, b}(L_v, Q_v, L_{ls(v)})[/math] для нахождения [math]Int(D_v, S_v')[/math] в функции [math]TreeSearch[/math]. Множество [math]L_{rs(v)}[/math] получается из [math]R_{ls(v)}[/math] за линейное время вставкой (если [math]p_c[/math] левая вершина отрезка) или удалением (если [math]p_c[/math] правая вершина отрезка) отрезка [math]s(c)[/math]. Но как получить [math]R_{ls(v)}[/math] из [math]L_v[/math], [math]R_v[/math] и [math]I_v[/math] без сортировки?

Для листьев мы сделаем проверку вначале, и получим [math]R_v[/math] из [math]L_v[/math]. Пусть [math]L_v[/math] и [math]I_v[/math] известны, и все сыновья узла [math]v[/math] - листья. Для начала запустим функцию [math]Split(L_v, Q_v, L_{ls(v)})[/math] и найдем [math]Q_v[/math] и [math]L_{ls(v)}[/math]. Теперь мы должны найти [math]Int(D_s, S_v') = Int(D_v, L_{ls(v)}) \cup Int(D_v, I_v) \cup Int(D_v, R_{rs(v)})[/math], но мы не знаем [math]R_{rs(v)}[/math] и, соответственно, можем найти только [math]Int(D_v, L_{ls(v)}) \cup Int(D_v, I_v)[/math]. Применим [math]SearchInStrip[/math] к множеству [math]L_{ls(v)}[/math] и получим [math]R_{ls(v)}[/math]. Множество [math]L_{rs(v)}[/math] получается из [math]R_{ls(v)}[/math] вставкой или удалением отрезка [math]s(c)[/math]. Применим [math]SearchInStrip[/math] к [math]L_{rs(v)}[/math] и найдем [math]R_{rs(v)}[/math]. Теперь можем продолжить вычисление [math]Int(D_v, R_{rs(v)})[/math] и получим [math]R_v[/math] слиянием [math]Q_v[/math] и [math]R_{rs(v)}[/math].

Конечная функция будет выглядеть так:

[math]IntersectingPairs(S_0)[/math]
[math]\{[/math]
    Отсортируем [math]2N[/math] концов отрезков по абсциссе
        и найдем [math]p_i[/math], [math]s(i)[/math] где [math]i = 1, ..., 2N[/math];
    [math]L_r \leftarrow (s(1))[/math]; [math]I_r \leftarrow S_0 \setminus (\{s(1)\} \cup \{s(2N)\})[/math];
    [math]TreeSearch(L_r, I_r, 1, 2N, R_r)[/math];
[math]\}[/math]
[math]TreeSearch(L_v, I_v, a, b, R_v)[/math]
[math]\{[/math]
    if [math]b - a = 1[/math] then
    [math]\{[/math]
        [math]SearchInStrip_{a, b}(L_v, R_v)[/math];
        return;
    [math]\}[/math]
    [math]Split_{a, b}(L_v, Q_v, L_{ls(v)})[/math];
    [math]D_v \leftarrow (Q_v, \langle a, b \rangle)[/math];
    Найдем [math]Int(D_v, L_{ls(v)})[/math];
    [math]c \leftarrow \lfloor (a + b) / 2 \rfloor[/math];
    Разделяем отрезки из [math]I_v[/math]
       внутренние для полосы [math]\langle a, c \rangle[/math] во множество [math]I_{ls(v)}[/math]
       внутренние для полосы [math]\langle c, b \rangle[/math] во множество [math]I_{rs(v)}[/math]
    [math]TreeSearch(L_{ls(v)}, I_{ls(v)}, a, c, R_{ls(v)})[/math];
    if [math]p_c[/math] левый конец отрезка [math]s(c)[/math] then
        [math]L_{rs(v)} \leftarrow[/math] вставить [math]s(c)[/math] в [math]R_{ls(v)}[/math]
    else
        [math]L_{rs(v)} \leftarrow[/math] удалить [math]s(c)[/math] из [math]R_{ls(v)}[/math]
    [math]TreeSearch(L_{rs(v)}, I_{rs(v)}, c, b, R_{rs(v)})[/math];
    Найдем [math]Int(D_v, R_{rs(v)})[/math];
    for [math]s \in I_v[/math] do
        Найдем [math]Loc(D_v, s)[/math] используя двоичный поиск;
    Найдем [math]Int(D_v, I_v)[/math] используя значения, полученные шагом выше;
    [math]R_v \leftarrow Merge_b(Q_v, R_{rs(v)})[/math];
[math]\}[/math]

Заметим, что нахождение [math]Int(D_v, R_{rs(v)})[/math] надо делать аккуратно, так как множества [math]R_{rs(v)}[/math] и [math]L_{ls(v)}[/math] могут иметь одни и те же отрезки (которые пересекают [math]\langle a, b \rangle[/math]). Мы нашли их пересечения с [math]D_v[/math] при поиске [math]Int(D_v, L_{ls(v)})[/math], и не должны вывести эти пересечения снова.

Время работы

Для начала рассчитаем место, необходимое для выполнения алгоритма. Алгоритм использует рекурсивную функцию [math]TreeSearch[/math]. Последовательность вызовов функции может занять память. Эта последовательность может быть представлена как путь корня рекурсивного дерева, до узла. Соответствующий вызов этого узла занимает [math]O(N)[/math] памяти, каждый его "предок" занимает [math]O(|I_v| + |Q_v|)[/math] памяти, а остальные структуры используют [math]O(N)[/math]. Очевидно, что любой путь [math]pt[/math] от корня рекурсивного дерева до какого-то узла [math]\sum_{v \in pt}(|I_v + |Q_v|) = O(N)(|I_v| \le b_v - a_v \le \lceil (b_{ft(v)} - a_{ft(v)})/2 \rceil)[/math].

В итоге для работы алгоритма требуется [math]O(N)[/math] памяти.

Лемма (#2):
[math]\forall v \in V \ |S_v'| \le a_v - b_v + |Int(D_v, S_v')|[/math].
Доказательство:
[math]\triangleright[/math]
Утверждение напрямую вытекает из первой леммы и очевидного факта, что для любого множества [math]S \subset S_0[/math], количество концов отрезков, лежащих в полосе [math]\langle a_v, b_v \rangle[/math], меньше чем [math]b_v - a_v[/math].
[math]\triangleleft[/math]
Теорема (#1):
[math]\sum_{v \in V} |S_v'| \le 2N \lceil logN + 1 \rceil + K[/math]
Доказательство:
[math]\triangleright[/math]
Утверждение напрямую вытекает из леммы №2 и следующего отношения [math]\sum_v (b_v - a_v) \le 2N \lceil logN + 1 \rceil[/math].
[math]\triangleleft[/math]

Обозначим множество всех вершин рекурсивного дерева за [math]RT[/math].

Теорема (#2):
[math]\sum_{v \in RT} |S_v| \le N \lceil 4logN + 5 \rceil + 2K[/math]
Доказательство:
[math]\triangleright[/math]
Для всех узлов, кроме корня [math]r[/math] имеет место выражение [math]|S_v| \le |S_{ft(v)}'|[/math], следовательно [math]\sum_{v \in RT} |S_v| \le |S_r| + \sum_{v \in RT \setminus r} |S_{ft(v)}| \le N + 2 \sum_{v \in V} |S_v'| \le N \lceil 4 logN + 5 \rceil + 2K[/math].
[math]\triangleleft[/math]

Начальная сортировка и инициализация множеств [math]L_r[/math] и [math]I_r[/math] может быть произведена за [math]O(N logN)[/math] времени. Время работы функции [math]TreeSearch[/math] является суммой длительностей всех его вызовов. Каждый вызов от внешних узлов добавляет к этой сумме [math]O(|L_v| + |Int_{a, b}(L_v)|)[/math]. Для внутренних же узлов, время требуемое для поиска [math]Loc(D_v, s)[/math] равно [math]O(|I_v| log N)[/math], а для остальных [math]O(|S_v| + |Int(D_v, S_v')|)[/math]. Если мы все это сложим, то придем к выводу, что наш алгоритм работает за [math]O(N log^2 N + K)[/math]. Заметим, что его скорость можно увеличить до [math]O(N logN + K)[/math], если не будем учитывать время нахождения [math]Loc(D_v, s)[/math].

Соответственно в оптимальном алгоритме Балабана [math]Loc(D_v, s)[/math] находится за [math]O(1)[/math].

Примечания

Литература

Т.Вознюк, В.Терещенко — К построению эффективного решения задачи пересечения отрезков
Ф.Препарата, М.Шеймос — Вычислительная геометрия