Функция Мебиуса — различия между версиями
Bochkarev (обсуждение | вклад) (→Свойства) |
м (rollbackEdits.php mass rollback) |
||
(не показано 5 промежуточных версий 4 участников) | |||
Строка 4: | Строка 4: | ||
|definition= | |definition= | ||
Функция '''Мёбиуса''' <tex> \mu (a) </tex> определяется для всех целых положительных '''a'''. Она задается равенствами: <br> | Функция '''Мёбиуса''' <tex> \mu (a) </tex> определяется для всех целых положительных '''a'''. Она задается равенствами: <br> | ||
− | * <tex> \mu (a) = 0 </tex>, если '''a''' делится на квадрат, отличный от 1. | + | * <tex> \mu (a) = 0 </tex>, если '''a''' делится на квадрат простого числа, отличный от 1. |
− | * <tex> \mu (a) = {(-1)}^k </tex>, если '''a''' не делится на квадрат, где '''k''' — число простых делителей '''a'''. | + | * <tex> \mu (a) = {(-1)}^k </tex>, если '''a''' не делится на квадрат простого числа, где '''k''' — число простых делителей '''a'''. |
}} | }} | ||
==== Свойства ==== | ==== Свойства ==== | ||
− | *1. Функция Мёбиуса [[Мультипликативность функции, свертка Дирихле|мультипликативна]]. | + | *1. Функция Мёбиуса [[Мультипликативность функции, свертка Дирихле|мультипликативна]] для взаимно простых <tex>m</tex> и <tex>n</tex>. |
** '''Доказательство:''' <tex> \mu (mn) = \mu(m) \mu (n) </tex>. Если '''m''' или '''n''' <tex> \vdots p^2 </tex>, то <tex> 0 = 0</tex>. Иначе пусть <tex> n=\prod p_i, m=\prod p_j </tex>, и <tex> k_n, k_m </tex> {{---}} количество чисел в произведении, соответственно. <tex> \mu (mn)= (-1)^{k_n + k_m} = (-1)^{k_n}(-1)^{k_m} </tex> ч.т.д. | ** '''Доказательство:''' <tex> \mu (mn) = \mu(m) \mu (n) </tex>. Если '''m''' или '''n''' <tex> \vdots p^2 </tex>, то <tex> 0 = 0</tex>. Иначе пусть <tex> n=\prod p_i, m=\prod p_j </tex>, и <tex> k_n, k_m </tex> {{---}} количество чисел в произведении, соответственно. <tex> \mu (mn)= (-1)^{k_n + k_m} = (-1)^{k_n}(-1)^{k_m} </tex> ч.т.д. | ||
*2. Пусть <tex> \theta (a) </tex> {{---}} [[Мультипликативность функции, свертка Дирихле|мультипликативная]] функция, и <tex> a = {p_1}^{\alpha_1} {p_2}^{\alpha_2} \ldots {p_k}^{\alpha_k}</tex> {{---}} каноническое разложение числа '''a''', тогда <center> <tex> \sum_{d|a} \mu(d) \theta(d) = (1 - \theta(p_1))(1 - \theta(p_2))\ldots(1 - \theta(p_k))</tex>. </center> | *2. Пусть <tex> \theta (a) </tex> {{---}} [[Мультипликативность функции, свертка Дирихле|мультипликативная]] функция, и <tex> a = {p_1}^{\alpha_1} {p_2}^{\alpha_2} \ldots {p_k}^{\alpha_k}</tex> {{---}} каноническое разложение числа '''a''', тогда <center> <tex> \sum_{d|a} \mu(d) \theta(d) = (1 - \theta(p_1))(1 - \theta(p_2))\ldots(1 - \theta(p_k))</tex>. </center> | ||
** '''Доказательство:''' <tex> \mu(a) , \theta(a)</tex> {{---}} [[Мультипликативность функции, свертка Дирихле|мультипликативны]], значит <tex> \theta_1 (a) = \mu(a)\theta(a) </tex> тоже мультипликативна. Пусть '''p''' {{---}} простое, значит <tex> \mu(p) = -1 </tex>, поэтому <tex> \theta_1(p) = -\theta(p)</tex>. Также <tex> \mu(p^s) =0(s \ge 2)</tex>, значит <tex> \theta_1(p^s) = 0 </tex>. Теперь применим свойство о сумме, распространенной на все делители некоторого числа, [[Мультипликативность функции, свертка Дирихле|мультипликативной]] функции, откуда получим <tex> \sum_{d|a} \mu(d) \theta(d) = (1 - \theta(p_1))(1 - \theta(p_2))\ldots(1 - \theta(p_k))</tex>. | ** '''Доказательство:''' <tex> \mu(a) , \theta(a)</tex> {{---}} [[Мультипликативность функции, свертка Дирихле|мультипликативны]], значит <tex> \theta_1 (a) = \mu(a)\theta(a) </tex> тоже мультипликативна. Пусть '''p''' {{---}} простое, значит <tex> \mu(p) = -1 </tex>, поэтому <tex> \theta_1(p) = -\theta(p)</tex>. Также <tex> \mu(p^s) =0(s \ge 2)</tex>, значит <tex> \theta_1(p^s) = 0 </tex>. Теперь применим свойство о сумме, распространенной на все делители некоторого числа, [[Мультипликативность функции, свертка Дирихле|мультипликативной]] функции, откуда получим <tex> \sum_{d|a} \mu(d) \theta(d) = (1 - \theta(p_1))(1 - \theta(p_2))\ldots(1 - \theta(p_k))</tex>. | ||
*3. Сумма значений функции Мёбиуса по всем делителям целого числа '''n''', не равного единице, равна нулю | *3. Сумма значений функции Мёбиуса по всем делителям целого числа '''n''', не равного единице, равна нулю | ||
− | : <tex>\sum_{d | n} \mu(d) = \begin{ | + | : <tex> |
− | + | \sum_{d | n} \mu(d) = | |
+ | \left\{ | ||
+ | \begin{array}{ll} | ||
+ | 1 & \mbox{if } n = 1 \\ | ||
+ | 0 & \mbox{if } n > 1 | ||
+ | \end{array} | ||
+ | \right. | ||
+ | </tex> | ||
+ | * '''Доказательство:''' Воспользуемся свойством 2, где <tex> \theta(a) = 1</tex>. |
Текущая версия на 19:22, 4 сентября 2022
Функция Мёбиуса
Определение: |
Функция Мёбиуса
| определяется для всех целых положительных a. Она задается равенствами:
Свойства
- 1. Функция Мёбиуса мультипликативна для взаимно простых и .
- Доказательство: . Если m или n , то . Иначе пусть , и — количество чисел в произведении, соответственно. ч.т.д.
- 2. Пусть мультипликативная функция, и — каноническое разложение числа a, тогда
- Доказательство: мультипликативны, значит тоже мультипликативна. Пусть p — простое, значит , поэтому . Также , значит . Теперь применим свойство о сумме, распространенной на все делители некоторого числа, мультипликативной функции, откуда получим . —
— - 3. Сумма значений функции Мёбиуса по всем делителям целого числа n, не равного единице, равна нулю
- Доказательство: Воспользуемся свойством 2, где .